
AD-A116 352 SOFTWARE ENGINEERING ASSOCIATES INC TORRANCE CA F/B 9/2
JOVIAL/ADA MICROPROCESSOR STUDY. (U)
APR 82 T E DEVINE, T L DUNBAR. M B LITTLEJOH4N F30602-80-C-0153

UNCLASSIFIED RADC-TR-82-61 NL

NON EEEEEEOE~
EEEEEohEEmhEE
mEEmhEmhEmhEE
EE MENEEEEEEEEEEmEENhE-El."

1.0 - ~

111.I25 .II4 1.6

V N T

RADC-TR4241
Final Technical Report
April 19M

JOVIAL/ADA MICROPROCESSOR STUDY"4

Software Engineering Associates, Inc.

Terence E. Devine, Terry L. Dunbar, Michael B. Littlejohn and
Kerry White

AM= FOR PDX RaW DA*1 1$RTION UNLIDTIC

ELECT -

ROME AIR DEVELOPMENT CENTER
C) Air Force Systems Command- Griffiss Air Force Base, NY 13441

2J
ai

: 82 06 28 r

This report has been reviewed by the RADC Public Affairs Office (PA) at
is releasable to the National Technical Information Service (NTIS). At NTIS
It will be releasable to the general public, including foreign nations.

RADC-TR-82-61 has been reviewed and is approved for publication.

APPROVED:Q-t A ,-*

RICHARD M. MOTTO
Project Engineer

APPROVED:

j J CINIAK, Colonel, US"F
Chief, Comand and Control Division

FOR THE COI*IANDER:

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or If the addressee is no longer employed by your organization,
please notify RADC. (COES) Griffiss APB NY 13441. This will assist .us in
maintaining a current maIling list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

UNCLASS IFIED
SECURITY CLASSIFICATION Of TWIS PAGE (Wh ina .. Enloere) _________________

REPOT DCUMNTATON AGEREAD INSTRUCTIONSREPOT DCUMNTATON AGEBEFORE COMPLETING FORM
f. RPOR NUa@f 12. GOVT ACCESSION NO. 1. 11E1CIPIEN? S CATALOG 1N1,161

RADC-TR-82-61_____ ______

4. TITLE (40E Subtitle) 5.TYPI OPremRT!fRIOOCEa&

JOVIAL/ADA MICROPROCESSOR STUDY April 80 - November 1981
6. PERFORMING OVID, REPORT NUM111ER11

7. AUTHOR(S) II. CONTRACT OR GRANT NUM111911.)

Terence E. Devine Michael B. Littlejohn
Terry L. Dunbar Kerry White F3O6O2-80-C-Ol53

9. 10911FORUING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT. PROJIECT. TASK

Software Engineering Associates Inc. ARA2702F UNT UOSR

23864 Hawthorne Blvd., Suite 200 627~0

Torrance CA 90505 .
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Rome Air Development Center (COES) April 1982

Griffiss AFB NY 13441 13. NUNISER1OFPAGEFS
202

1.MONITORING AGENCY NAME & AOORESS(iI different trass Contnoling Officit) IS. SECURITY CLASS. 1.1 the* oepot)

UNCLASSIFIED
Same IS& OECLASSIFICATION, DOWNGRADING

N/ASHDL
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. it different fro., Report)

Same

10. SUPPLEMENTARY NOTES

RADC Project Engineer: Richard Me Motto (COES)

IS. KCEY WORDS (Continue on eece. aide it neceesar mid Identify by block number)

Microcomputers Software Tools
Ada Development Systems
Microprocessors
Software Systems

40. ARSTRACT (Continue an reverse side It necessary and identify by block nMember)

The initial intent of this effort was to study the Microprocessor industry
for a period of eighteen months and to configure a Microprocessor System
capable of hosting an Ada compiler or at least a JOVIAL/J73 compiler.
Shortly into the study, the JOVIAL portion of the effort was eliminated.

,Basi, lly, the study investigated the following areas:
'a.zurentand future microprocessors technology,

Ifb. Oxisting c2Mp~ilers on small hosts, (over)

DO I !N1 1473 EDITION OF INov sS SSOLET9 UNCLASSIFIED
SECURITY CLASSIFICATION OF T4IS PAGE (When Des Entere")

UNCLASS.,FIED

ScUrNT? CLASSFICATION OP THiS PAGgVINI Sace I 1e

c. Advantages and disadvantages of hosting a development system on a
microprocessor,
d. Ada language issues,.'
e. The design of an Ada Integrated Encironment (AlE) for a microprocessox

(he study concluded that a workable Ada capability can be hosted on a
Motorola MC68000, Zilog Z8000, Intel 8086, Intel 432 or the soon-to-be-
marketed National Semiconductor 16032. A practical micro-based system
would support one of the above mentioned microprocessor, a terminal (CRT
or hand copy), floppy disks, a Winchester disk, applicable disk controller
and 256 Bytes of RAM. Obviously, each application directs the particular
hardware required to satisfy that application. At the time of this
report, several manufactors were advertising partial implementations of
Ada hosted on a variety of hardware configurations.

UNCLASSIFIED

SUCURIT CLASSIFICATION 0 , PAGYs (hOgll. 040 Eneed)

ACKNOWLEDGMENTS

The authors would like to thank Dr. Ken Bowles and Richard Kaufmann of
TeleSoft for their help in running benchmarks of the TeleSoft Ad& compiler.

Accession For

NTI$ GRA&I
DTIC TAB

e" Just if fat io_ ..

A%'i~ilyCod e s SPe

ani/or

Dist Speia1

I -. _

INDEX

1. Introduction 1

1.1 Report Organization 2
1.2 Acronyms, Terms and Trademarks 4

2. Background 7

3. Microprocessor Technology 10

3.1 Address Space 12
3.2 Auxiliary Space 13
3.3 Development Systems 13
3.4 Minicomputer/Microcomputer Families 14
3.5 Bundled vs. Orthogonal Architectures 14
3.6 Current Microcomputer Systems 15
3.7 Future Microprocessors 21

4. Microcomputer System Advantages 24

4.1 Cost 24
4.2 Localized control 24
4.3 Response time 25
4.4 Security 25
4.5 Counication 25
4.6 High-bandwidth 25
4.7 Media transfer 26

5. Microcomputer System Disadvantages 27

5.1 File backup 27
5.2 Maintenance 27
5.3 Software distribution 27
5.4 Swapping/Paging 27
5.5 Machine simulation 28

6. Prospects for Hosting a Development System 29
on a Microprocessor

6.1 Compiler 29
6.2 Debugger 30
6.3 Configuration Management 31

7. Compilers 32

7.1 Language Features 32
7.2 Comparison of J73 and Pascal Compilers 34

iAi
Pk6ZDJ IMO Iba5-W F1U

7.3 Microprocessor Ada Compilers 36 *

7.4 Characteristics of J73 Code 37
7.5 Compiler Code Expansion 38
7.6 Compilation Speed& 39
7.7 Execution Speeds 42

8. Ada Language issues 46

8.1 Data Space Management 46
8.2 Input-Output for Ada Programs 48
8.3 Text I/O for Ada Programs 48I
8.4 Tasking 49
8.5 Exception Handling 5
8.6 Generics 50
8.7 Overloading 51
8.8 Linking and Loading 52
8.9 Optimization 53
8.10 Recompilation 57

9. Minimum Capabilities of a Microcomputer Development 59
System

9.1 System Disk Storage Requirements 60
9.2 User Disk Capacity & Printer Speed 60
9.3 Compilation Speed 61
9.4 Other Peripheral Support 61
9.5 Source Program Size Limitations 62
9.6 System Facilities 63

10. System Overview 65

10.1 Environmental Differences 65
10.2 Distributed Computing 66
10.3 Relation to Ada Integrated Environment (AlE) 67
10.4 MDS Components 68
10.5 System Structure 69

11. Operating System 71

11.1 System Functions 71
11.2 Terminal Input Editing 72

12. Database 74

12.1 Utilities 75
12.2 Attributes 76
12.3 Versions and Revisions 77
12.4 Program Library 78

iv

13. Command Language Interpreter 84

14. Ad& Compiler 88

14.1 Symbol Table 8
14.2 Compiler Structure 91
14.3 Useability 91
14.4 Parsing Technique 93
14.5 Optimization 93
14.6 Local Code Generation 94
14.7 Calling Sequences 94
14.8 Addressing 95
14.9 Exception Checking 95
14.10 Register Allocation and 96

Coummon Subexpression Elimination
14.11 Dead Code Elimination 96
14.12 Constant Arithmetic 97
14.13 Flow Analysis 97
14;14 Compiler Structure 98
14.15 Compiler Use 101

15. Linker 102

15.1 Interfaces 102
15.2 Capabilities 103

16. Debugger 109

16.1 Relation to MDS 110
16.2 Capabilities 110
16.3 Sample Debugging Session 112
16.4 Debugger Directives 114

17. Text Editor 117

18. Other Tools 127

18.1 NDS support tools 127
18.2 Additional MDS tools 127

19. Performance Estimates 130

19.1 Compiler "Gibson Mix" from [Bloom74J 130
19.2 "Gibson Mix" Calculation 133
19.3 Compiler Performance Estimates 136

20. Conclusions 141

20.1 Future Work 142

21. References 143

v

Appendices Page

A - J73 Compiler Phase Sizes 155
B - Sizes of Executables on Disk for SEA J73 Compiler 156
C - Compilation Speeds for J73/1 157
D - Compilation Speeds f or J73 160
E - Compilation Times and Speeds for UCSD Pascal 161
F - Compilation Times and Speeds for Pascal/Z 162
G - Code Sizes for Compiler Benchmarks 163
H - Frequency of Occurrence of IL Tokens 164
I - Frequency of Occurrence for Statements 170
J - Execution Benchmark Results 172
K - Compilation Statistics 179
L - Compiler Gibson Mix - Space 180
M -Compiler Gibson Mix - Time 184
M - List of Companies 187

vi

JOVIAL/Ad& Microprocessor Study Final Technical Report

1. INTRODUCTION

The purpose of this study was to determine if a microcomputer could host a
software development system which provided, among other tools, JOVIAL J73 or
Ada compilers. At the time the study was envisioned, there was some question
as to whether satisfactory performance could be obtained with the then current
hardware. Consequently, the study was to include a projection of the hardware
which was expected to be available by 1985. In addition, a design for a
microcomputer-based development system was to be presented, along with
estimates of its performance on present-day and 1985 hardware.

The field of microcomputers is changing so rapidly that almost anything which
is written about the current state of the field is outdated by the time it is
published. In the time since the initiation of this study, an Ada development
system hosted on a micro has appeared on the market. Thus, the question is
not now one of "Can a development system be hosted on a microcomputer?", but
rather "What should such a system look like and how many users can it
support?'"

The material relating to available hardware contained in this report was
obtained through a literature search and by contacting various hardware
suppliers. Benchmark programs were executed to obtain information about the
various machines and implementation techniques. The software system design
which is presented here represents the fruits of original research, together
with ideas culled from the literature.

JOVIAL/Ada, Microprocessor Study Final Technical Report

1.1 enort- Organization

The main body of this report is divided into 12 chapters, which cover such
topics as the available hardware, the advantages and disadvantages of
microprocessor-based systems, performance results, a high level look at a
system design, and estimates of its performance. The detailed specifications
are presented in an abbreviated B5 specification format (the testing and
quality assurance sections are omitted) in separate volumes.

The body of the report is organized into chapters as follows:

Chapter 1 (this chapter) provides an introduction to the report.

Chapter 2 provides background information.

Chapter 3 discusses current and future microprocessor technology.

Chapter 4 discusses the advantages of a microcomputer-hosted development
system as compared with a system on a large host.

Chapter 5 discuaises the disadvantages of hosting a development system on a
microcomputer.

C' Ater 6 discusses the prospects for hosting a system on a micro.

Chapter 7 discusses existing compilers, both on large and small hosts, and
their performance.

Chapter 8 discusses Ada, language issues.

Chapter 9 discusses the minimum capabilities that are necess~ary to have a
useful development system.

Chapter 10 gives an overview of our proposed development system.

Chapter 11 discusses the operating system.

Chapter 12 discusses the database, including the Ada progra library.

Chapter 13 discusses the comnd language interpreter.

* Chapter 14 discusses the Ada compiler.

Chapter 15 discusses the linker.

2

JOVIAL/Ada Microprocessor Study Final Technical Report

Chapter 16 discusses the source-level debugger.

Chapter 17 discusses the text editor.

Chapter 18 discusses the other tools in the systen. These include tools
used to develop the system, as well as other useful utilities.

Chapter 19 provides performance estimates for the system, assuming it is
hopted on various hardware configurations.

Chapter 20 is the st-ary of results.

Chapter 21 is the bibliography.

3

JOVIAL/Ada Microprocessor Study Final Technical Report

1.2 Acronyms. Terms and Tradeearks

APSE Ada Programming Support Environment
CLI COMMAND LANGUAGE INTERPRETER
CP/M A microcomputer operating system (CP/M is a trademark of

Digital Research)

DEC-10 A mainframe (DEC is a trademark of Digital Equipment Corp)

DIS Digital Integrating Subsystem - a 16-bit microprocessor which
is basically a Z8002 with memory mapped I/0

DMA Direct Memory Access - a method of performing I/O in which
memory is accessed by the I/O controller without requiring the
services of the CPU.

ECL Emitter Coupled Logic

Horizon An 8-bit microcomputer (Horizon is a trademark of North Star
Computers)

i A trademark of Intel

ICE In-Circuit Emulation (ICE is a trademark of Intel)

ISAM Indexed Sequential Access Method

JCL Job Control Language

K 2**10 - 1,024

KAPSE Kernel APSE

KB Kilobyte (1024 bytes)

LSI Large Scale Integration

LSI-11 LSI implementation of the PDP-ll (LSI-lI is a trademark of
Digital Equipment Corp.)

M 2**20 - 1,048,576

MB Megabyte (1,048,576 bytes)

MC68000 A 16-bit microprocessor, also known as the 68000 (MC68000 is a
trademark of Motorola)

4

JOVIAL/Ada Microprocessor Study Final Technical Report

MDS Microprocessor Development System

Minifloppy A trademark of Shugart Associates

MOS Metallic Oxide Semiconductor

MULTIBUS a standard bus (IEEE 796) (Multibus is a trademark of Intel)

Naked Mini A Mini/microcomputer family (Naked Mini is a trademark of
Computer Automation)

Native Code Machine code, as opposed to interpretive code.

Nova A Mini/microcomputer family (Nova is a trademark of Data
General Corp.)

Pascal/Z A Pascal compiler for the Z80 (Pascal/Z is a trademark of
Ithaca Intersystems)

P-code Pseudo-code - In this report the term refers to the
interpretable output of the USCD Pascal compiler.

PDP-6 A 36-bit computer (PDP is a trademark of Digital Equipment
Corp.)

PDP-8 A 12-bit minicomputer (PDP is a trademark of Digital Equipment
Corp.)

PDP-11 A 16-bit minicomputer family

PL/I-80 A PL/I subset compiler (PL/I-80 is a trademark of Digital
Research)

Q-Bus A microcomputer bus (Q-Bus is a trademark of Digital Equipment
Corp.)

S-100 A microcomputer bus (IEEE 696)

T1990 A mini/microcomputer family produced by Texas Instruments

UCSD Pascal A microcomputer Pascal compiler (UCSD is a trademark of the
Regents of the University of California)

UNIX An operating system (UNIX is a trademark of Bell Laboratories)

VAX A supermini family (VAX is a trademark of Digital Equipment

5

JOVIAL/Ada Microprocessor Study Final Technical Report

Corp.)

VLSI Very Large Scale Integration

Z80 An 8-bit microprocessor (Z80 is a trademark of Zilog)

Z8000 A 16-bit microprocessor family (Z8000 is a trademark of Zilog)

Z8001 A 16-bit microprocessor vith a segmented address space (Z8001
is a trademark of Zilog)

Z8002 A 16-bit microprocessor vith a non-segmented address space
(Z8002 is a trademark of Zilog)

6502 An 8-bit microprocessor

8080 An 8-bit microprocessor (8080 is a trademark of Intel)

8086 A 16-bit microprocessor (8086 is a trademark of Intel)

6

JOVIAL/Ada Microprocessor Study Final Technical Report

2.* BACKGROUND

There have been three major cycles in program development since the advent of
the electronic computer. The original machines, although physically large,
had a fraction of the capabilities of today's mainframes. In fact, the
capabilities of early computers are on the order of those found today in
progrmmble calculators [Computer, Jan. 1980, p.51. Program development was
originally done in machine language and later in assembly language. Since the
memories of the early machines were small, and since their processors were
slow, it was crucial that the program be coded in such a way as to minimize
their time and space requirements. Hardware was the principal cost in a
computer system.

As machine sizes and speeds increased, it became possible to write programs in
higher-level languages, letting the compiler take care of much of the
bookkeeping which had previously been the responsibility of the assembly
language programer. Still, there was great concern about the efficiency of
the compiled code. One of the coacerns of the implementors of the first
FORTRAN compiler was that the language would not be accepted if compiled code
executed too slowly [Backus781.

In the 1960's a second cycle began as minicomputers arrived on the scene.
Again, memories were small and the machines were relatively slow. Assembly
language was the primary vehicle for programming these machines. Word sizes
of minicomputers tended to be 12 or 16 bits. This provided one of the
principal meaLxs of distinguishing between mainframes and microcomputers. In
addition memories tended to be smaller and the instruction sets more primitive
on minicomputers.

Minicomputers also grew, both in terms of memory and word size.
High-level languages came into broader use as machine capabilities
increased. Currently there is a good deal of overlap between the word sizes
of minicomputers and mainframies. (This will become true of microcomputers
also as 32-bit microprocessors become available.)

We are now involved in the third cycle. Microcomputers started out in the
early 1970's as machines with very primitive instruction sets and small
memories. Again, it was very important that programs be coded to require
minim amounts of time and space. As hardware technology has improved,
microcomputers have become more sophisticated and their capabilities are
approaching those of minicomputers.

Two distinct classes of microprocessors are emerging. The smaller, less
powerful micros are suitable for replacing random logic and are not
particularly well-suited to traditional computer applications. The faster,

7

JOVIAL/Ada Microprocessor Study Final Technical Report

more powerful microprocessors are suited for general purpose computing. Even
among the latter class there are subclasses. There is quite a difference in
the capabilities of the microprocessors comonly found in hobby computers and
those used in more serious systems.

The instruction sets for some current microprocessors are identical to some
minicomputers, since they are large scale integration (LSI) implementations of
minicomputer architectures. Examples of such mini/micro-computer families are
the PDP-11, Nova, T1990, Naked Mini and PDP-8. In some cases the 1/O
capabilities of the mini exceed those of the micro.

The never microprocessors are more powerful, in some cases, than minicomputers
of an older vintage. It is currently fashionable to compare instruction
execution times for new microprocessors with those of the various models of
the PDP-ll. In addition, the never microprocessors have address spaces which
are larger than those of most of the older minicomputers.

Thus, the primary hardware differences between mini and microcomputers are
packaging and 1/0 capability. Two other differences are the availability of
software and the approach to marketing (selling components as opposed to
systems). The dividing line between the two classes of machines is somewhat
fuzzy. In a number of cases the CPU consists of a single integrated circuit
on a chip (a portion of semiconductor material which comes from a wafer of the
same material). Such a CPU is clearly a microprocessor, but a machine whose
CPU requires multiple cards is clearly not. The gray area is for those CPUs
which require a number of chips, but which fit comfortably on a card. It is
not reasonable to restrict the definition of a microprocessor to a single chip
CPU, since this would exclude such machines as the 8080 and F8, which are
obviously microprocessors. (The 8080 requires two additional chips to supply
the clock and bus interface logic). It seems appropriate to use a broad
enough definition to include such machines as the LSI-11 which has a 2-5 chip
CPU.

The definition which will be used here is to consider a CPU composed of 5 or
fewer chips to be a microprocessor. This dividing line is somewhat arbitrary
and could certainly be stretched, if necessary.

Another criterion which is sometimes used is that the CPU be composed of
circuits' which are sufficiently specialized so as not to be useful except as
part of a CPU.

One important difference in these three cycles is the difference in the
hardware costs, from one cycle to another. This is relevant particularly when
considering the relative difference in cost between hardware and software.
The cost of hardware has been decreasing, while the cost of software has been
increasing. VI'il* hardware costs may not continue to decrease in absolute

JOVIAL/Ada Microprocessor Study'Final Technical Report

terms, they will most likely not increase as fast as the cost of software.

Thus, while microprocessors represent the third hardware cycle, not all the
conditions which existed in the early days of electronic computers prevail
today. In addi.tion to the disparity ia software costs, additional knowledge
has been gained regarding the use of development tools. It is possible to
apply this knowledge to microprocessors, at least to the extent of using those
tools which have been hosted on mainframes or minicomputers which were of
comparable size to today's microcomputers.

Questions arise when attempts are made to apply the highest software
technology to small machines. Certainly, a microprocessor cannot be expected
to deLiver identical performance of a mainframe. Is it possible, however, to
provide acceptable performance for large-language compilers? What are the
differences between a development system on a large host and one on a
microprocessor? Is it possible to create a useful development system using a
microprocessor as a host or would such a system merely be a toy? What are the
advantages of a microprocessor-based system? The purpose of this study is to
provide answers to such questions.

These questions apply to both Jovial J73- and Ada-based development systems,
but particularly to Ada-based systems. Since Ada is a larger language, it
places more requirements on the system. If a system can host an Ada compiler,
it should also be able to host a J73 compiler. For this reason, and because
Ada will eventually replace J73, the bulk of the effort expended in this study
has been directed toward investigating the problems associated with hosting an
Ada compiler and system on a microcomputer.

9

JOVIAL/Ada Microprocessor Study Final Technical Report

3. Microprocessor Technology

During the past ten years great advances have been made with integrated
circuits, both with respect to circuit density and speed. Whereas, in the
early 1970's microprocessors had primitive instruction sets and ran at clock
speeds ot about 200KHz [Noyce8l], current microprocessors have instruction
sets which are comparable to, or even better than, those of minicomputers of
several years ago, and run at clock speeds of up to 15Mlz [Nelson81].

There are a number ot factors which are relevant to the problem of hosting
large systems on a given hardware configuration. These include such factors
as machine speed, addressing space, storage capacity, and I/O capability and
speed.

Clearly, microcomputers are not as fast as larger machines. This is true for
a number or reasons. One is the technology involved. Larger machines
typically use Emitter Coupled Logic (ECL), whose gate delays are in the range
0.7 to 2 nanoseconds while most microprocessors use some form of Metallic
Oxide Semiconductor (MOS) technology which exhibit delays of 4 to 200 nsec
[Electronics, 4/17/80 p.547]. (For discussions of Large Scale Integration
(LSI) and Very Large Scale Integration (VLSI) see (Mead8O, Clark8O, and
Tobias81].) Another factor which influeaces the processor speed is processor
architecture. A number of large machines have multiple processors or multiple
execution units. Instruction scheduling and various forms of pipelining may
be used to increase throughput. Microprocessor architectures tend to be more
straightforward, although some of the more recent microprocessors (e.g., Intel
8086, Zilog Z8000, Motorola MC68000) do use pipelining for instruction
fetching. There is research being conducted into the use of multiple
microprocessors; however, while this would be relevant to obtaining higher
performance using micros, it is not pertinent to obtaining a minimum
configuration for a development system. Another factor in the increased
performance in larger systems is the use of cache memory. This feature is
available for microprocessors, but it is relatively unconon.

The speed ot a machine also depends on the instruction -set. Operations which
are not present in the hardware (e.g., multiplication or division) must be
simulated by the software. This can cause a considerable degradation in
speed.

Early microprocessors, such as the 8080, had primitive instruction sets due to
hardware limitations. Indexing had to be simulated by adding an offset to
vhat would normally have been the contents of an index register. There were
no instructions for multiplying and dividing and the only 16 bit operations
were loading, adding and storing. Current microprocessors often provide
operations such as multiplication and division for operands with lengths of 16
or 32 bits.

10

JOVIAL/Ada Microprocessor Study Final Technical Report

Index registers are particularly important if native code is to be generated
for languages such as J73 or Ada which allow procedures to be recursive or
reentrant. The lack of an index register would require that an address
computation be performed for any memory reference to an item whose allocation
was not static. The Z80 does have index registers, but lacks such
instructions as multiply and divide.

The 16-bit microprocessors tend to have hardware to perform integer
multiplication and division. Newer microprocessors such as the 8086, Z8000
and MC68000 can perform signed multiplication. However, most of these
machines do not have floating point instructions built into the chips. The
8086 has a companion chip (the 8087) which does perform floating point
arithmetic [Intel79]. Some of the look-alike microprocessors such as the
Computer Automation Scout have floating-point hardware [Computer Automation].
(For a comparison of some of the 16-bit machines see [Toong8l]. A survey of
available microprocessors and microcomputers appears annually in EDN.)

Of the factors mentioned here, the most important in terms of the execution
speed ot system software is integer multiplication. While the presence of
floating point hardware may be crucial to the performance of application
programs, it is relatively unimportant with respect to system programs.
Integer multiplication is most often used for subscript calculations in system
programs.

11

JOVIAL/Ada Microprocessor Study Final Technical Report

3.1 Address Space

Until recently, addressing space was the most severe limitation which had to
be dealt with. It is still an important consideration. Older microprocessors
were limited to 64K bytes of memory or less. It is only recently that
microprocessors which have the ability to address more than 64K at one time
have been available. While some of the older machines had memory management
units which would allow more than 64K of physical memory, the virtual address
space for each user was limited to 16 bits, making it impractical to run
programs larger than 64K. The 64K restriction hsi been recognized as the
major limitation of the PDP-11 architecture [Be]l..978,p.38] and is also a
limitation ot most microprocessor architectures. The more recent machines
such as the 8086, Z8000, and Motorola 68000 have a significantly larger
address space.

There are two considerations concerning addre.. race. The first is how much
physical memory can be addressed by the maine. This is relevant to how many
users can be accomodsted before swapping is necessary. It is less of a factor
if it is relatively easy to re-map memory.

A more important consideration with respect to hosting large programs is how
much memory is instantaneously addressable or can easily be made addressable.

The 8086 has an address space of 1 megabyte but only 256K of this is
instantaneously addressable since there are four segment registers and the
maximum size of a segment is 64K. Since the size of the registers is 16 bits,
the maximum size of a pointer or index (and hence a table or array) is 64K for
all practical purposes. It would be possible to perform a double precision
address computation and to load both a segment register and an index register,
but this is undesirable, if it occurs often. The problem is less severe for
subroutine references since a segment register could be loaded prior to A
procedure call. (This would be analogous to loading a base register before
calling a subroutine on the IBM 370). Thus, for all practical purposes there
is a limitation of 192K (three segments of 64K each) for data on the 8086 but
code is only limited by the size of memory (lM maximum addressable).

The addressing structure of the Z8000 is quite different. There are actually
two versions of the CPU, one segmented and the other unsegmented. The
unsegmented Z8002 CPU provides 64K byte addressability, but data references,
stack references and program references can be separately distinguished,
giving a total of 192K of addressable space in user mode. In system mode
another 192K is addressable. Note that the full 192K can only be utilized if
the data, stack and program spaces are each 64K. These figures are
theoretical in that they represent the memory which can be addressed if some
special pins are used by the support hardware. Not all Z8002-based
microcomputers use them, so the actual amount of addressable memory may be

12

JOVIAL/Ada Microprocessor Study Final Technical Report

less.

The Z8001, the segmented version, allows up to 8M to be addressed in each
address space, or a total of 24M for a given user. Each 8M is divided into
128 segments of 64K each. Since the index registers of the Z8000 only allow

offsets of 16 bits (the index registers are double registers, but one half is
used for the segment number), it is impractical to have tables or arrays

larger than 64K. All 127 segments are instantaneously addressable, so this

addressing scheme is somewhat more powerful than that used by the 8086.

Since the Digital Integrating Subsystem (DIS) machine is based on the Z8002
architecture, the remarks made above with respect to the Z8002 apply to the
DIS. However, the actual configuration is 128K bytes, rather than the
theoretical maximum ot 192K. (The address space is divided into code and data
spaces - stack space is not separate.) Since the lower 2K bytes of data

space are used for memory-mapped I/0 and the lower 4K bytes of code space are

used for the bootstrap loader, 122K bytes are actually available for use by

programs [General Dynamics80].

The Motorola MC68000 permits 241M to be addressed, with the possibility of
expanding the architecture at a future date to 4 gigabytes. The address space
is unsegmented so the sizes of data structures are limited only by the size of
memory (i.e., they are not restricted to 64K). The only difficulty with

respect to address computation is that the maximum allowable displacements for
various addressing modes are 32K or less, requiring that an extra instruction
be generated in the event of a large offset. This is only a minor problem,

however.

3.2 Auxiliary Storaie

Auxiliary storage capacity is another important way that microcomputers differ

from larger computer systems. A single disk pack for a 3330 type disk drive
holds a hundred megabytes of data. Newer disks, such as the 3370, hold over
half a gigabyte. Most microcomputer systems do not have that much total disk

storage. (For a survey of microcomputer disk drives see [Roman8l].)

3.3 Development Systems

There are already a number of development systems hosted on microprocessors

[Santoni8O, Mini-Micro Systems, August 19801. They can be used to perform
compilations or assemblies without requiring a minicomputer or mainframe
host. It should be noted, however, that compilers residing on these systems

are not for languages of the complexity of J73 or Ada. Compilers for subsets

of COBOL, PL/I and Ads currently are hosted on microcomputers; these represent

13

JOVIAL/Ada Microprocessor Study Final Technical Report

the most complex languages now available on such systems.

Another facility supported by these development systems is In-Circuit
Emulation (ICE). ICE allows the microprocessor in the target system to be
replaced by a connection to the development system, so that the facilities of
the development system can be used to check out the target system.

Some of these microcomputer based development systems support multiple users.
The methods f or doing this vary. Both centralized and distributed systems are

used.

3.4 Minicomputer/Microcomputer Families

One ot the reasons for using a microcomputer as the host for a development
system is so that the application program under development can be run on a
processor with the same architecture as the target. That is, the application
can be tested on the development system without requiring a simulator for the
target CPU. For larger projects, microcomputers may not provide sufficient
throughput, particularly with regard to I/0.

One possible approach to meeting these requirements would be to use a
minicomputer, from the same architectural family as the microprocessor target,
as the host. There are a number of microcomputers which have the same
instruction sets (or at least very nearly so) as some minicomputers. Some
such families are the PDP-lls, Novas, Naked Minis, and the TI 990 and 9900.

Unfortunately, these microcomputer families suffer from the 64K addressing
limitation.

3.5 Bundled Vs. Orthogonal Architectures

In an orthogonal architecture, a major function may be modified without
affecting other major functions [Klingman, p.4231. By contrast, in a bundled
architecture, modifying the capabilities for one function may have an effect
on the capabilities ot a number of others. The examples which Klingman uses
for bundled and orthogonal architectures, respectively, are the Fairchild F-8
and the Intel 8080.

In the F-8 architecture, ROM, timers, I/O ports, interrupt logic and registers
are all on a single chip. Thus, if ROM is added to the system, the timers,
ports, etc. are also added. In the case of the 8080, adding ROM implies
nothing more. I/O, for example, is unaffected.

While it is somewhat more awkward to expand a bundled architecture, such an

14

JOVIAL/Ada Microprocessor Study Final Technical Report

architecture does have the advantage of allowing low chip counts for the
complete system. This is particularly advantageous for low-cost, high-volume
applications. It is less important for a development system, since the CPU is
a relatively small part of the total system cost. (The newer 16-bit
microprocessors can be purchased for under $100 apiece in small quantities,
but even a relatively small development system would cost thousands of
dollars.) Of greater importance is the ability to be able to expand the
system.

There are a number of single chip microcomputers available. Those currently
in existence do not seem sufficiently powerful to serve as the host for an Ada
compiler but such hardware should be available in several years. In some
sense, though, a one-chip computer represents the ultimate in bundling.

The issue of bundled vs. orthogonal architectures is somewhat moot at this

point, since those architectures at the high end of the microprocessor
spectrum tend to be more orthogonal than not. It is primarily at the logic
replacement end where bundling is likely to be an issue.

3.6 Current Microcomputer Systems

A microcomputer system, of course, is more than just a CPU. Although the
power of the CPU must be considered when obtaining a microcomputer, it is
necessary to address other hardware areas such as buses, memory and
peripherals, as well as the overall configuration. In this section we attempt
to provide examples of what hardware is currently available and hoy much it
costs.

The systems listed here are only a small fraction of the number of different
systems which are available.

Computer Manufacturers

There are a number of companies which produce microcomputer systems. These
include the semiconductor manufacturers themselves, mainframe and minicomputer
manufacturers, and companies whose involvement with computers is primarily as
microcomputer builders. Semiconductor manufacturers who produce complete
systems include Intel, Zilog, Motorola and Texas Instruments. rainframe and
minicomputer manufacturers whose offerings include microcomputer systems are
IBM, Xerox, Hewlett-Packard, DEC and Data General. A large number of other
companies produce microcomputer systems, but do not fall into either of the
other categories. Some such as Apple are primarily computer manufacturers.
Others, like Radio Shack are more diversified. Other manufacturers include
Commodore, Atari, Ohio Scientific, Heath/Zenith and North Star. A discussion

15

JOVIAL/Ada Microprocessor Study Final Technical Report

of sales figures for the more popular makes can be found in [Infoworld,
Sept.14,1981).

Buses

A bus is a common communication link between two or more system components
[Bell78, Poe79]. External system buses are implemented as parallel lines on a
printed circuit card. These lines can be divided into four major classes:
address, data, control and miscellaneous (including clock, power, ground, and
expansion) [Osborne80].

Most microcomputer systems use an external bus structure for communication
between the CPU, memory and peripherals. There are exceptions, however.
Single-chip microcomputers have memory on the same chip as the CPU, so the CPU
can communicate directly with memory. Some single board micros communicate
with peripherals via serial or parallel ports. A standard bus architecture
(there are a number of popular buses) is better for adding peripherals and
memory, since the appropriate boards (memory or controllers) may be plugged
into the chassis. Although some peripherals can be added to a system via
RS-232 interface, this sort of interface is typically slower than either that
of a bus, or a parallel port. (RS-232 is a standard for connecting terminal
equipment to communications equipment for serial data transmission at speeds
of up to 20,000 bits/second [Ogden8O]).

Some ot the more popular microcomputer buses are the S-100 bus (IEEE-696), the
IEEE-488, the Q-bus, and the Multibus. For each of these buses there are a
number of peripheral controllers and memory boards available.

The type or bus is important from a performance standpoint as well as from the
standpoint of peripheral availability. The bus structure may place
limitations on the computer system in terms of both size and speed. Size
limitations arise from the number of address lines available on the bus.
Speed limitations arise if the bus cycle time is not sufficiently fast to
satisfy CPU requests for data from memory. Some of the newer processors are
too fast for some buses in the sense that the CPU must wait until data is
available and therefore cannot run at full speed. One example of this is an
8Mhz MC68000 with a Q-bus. Since the bus cycle time is about a microsecond,
the CPU speed is effectively halved when compared with that obtainable with a
faster bus such as a Multibus.

Memory

Memory technology is advancing rapidly. RAM chips are increasingly common in
the 64K size and 256K chips are expected to be available in the near future.

16

JOVIAL/Ada Microprocessor Study Final Technical Report

The major significance of this increase in density, with respect to
microprocessor development systems, is that memory will become cheaper (on a
per byte, rather than a per chip basis) so larger configuratiuns will become
more economical.

In order to take full advantage of the power of modern microprocessor*, it is
necessary for the memory to match the CPU speed. Different types of CPUs have
different requirements. The 68000 requires that memory be only one-fourth as
fast as the clock. The Z80 needs a memory with a cycle time equal to the
clock cycle, and the 6502 requires that memory be twice as fast as the clock.

Memory management can be used to increase the amount of memory addressable by
the CPU. This is particularly important when a CPU with a 64K addressing
limit is being used to support multiple users, but it is also used in
conjunction with some of the less restricted CPUs to allow contiguous logical
address spaces to be mapped into fragments of real memory

A number of techniques are used. Some systems use old-fashioned bank
switching. This is a technique in which a bank of memory is activated or
deactivated by a special command from the CPU.

Several semiconductor manufacturers have memory management unit chips
available. These chips typicall.y allow logical address spaces to be mapped
into segmerts of physical memory [Johnson8lAug].

Disks

Progress is also being made in the technology of peripherals. With the advent
of mini-Winchester disks, it was possible to attach low-cost, high-performance
hard disks to a microcomputer system. There was a problem, how'ever in
providing backup for these disks, because the media were not removable.
Floppy disks could be used for backup at the inconvenience of multiple media
changes, because the capacity of floppies was considerably less than that of
the Winchesters.

Streaming tape drives were introduced for the purpose of backing up these
disks. The streaming drives differ from ordinary drives in that there is no
inter-record gap; data is recorded in a continuous stream.

More recently, removable Winchester cartridges have been developed. A system
with this sort of disk would not need additional hardware for backing up the
database.

17

JOVIAL/Ada Microprocessor Study Final Technical Report

Systems

At the present time a large number of different microcomputer configurations
are available. They range from programmable calculators (recall that they are

as powerful as mainframes of the early fifties) to multi-megabyte systems. In

addition, it is possible to configure networks of microcomputers which share a
common database. The following section attempts to enumerate some
configurations which are available. Not all are suitable for hosting an Ads

development system, but they do illustrate what has been done and also provide

a basis for predicting what will be done in the future.

At the low end of the scale are programmable calculators. These exist for an

entirely different purpose than developing Ada programs. Next are the

personal computers. These typically have small memories in their basic

configurations and have limited input/output capabilities (often a cassette
deck). Some examples of personal computers are the Apple II, the TRS-80 and
the Commodore Pet. These computers exist in a different environment than
development systems do, since the owner's time is usually cheap relative to

hardware costs for a hobby computer, while programmers' time is expensive
relative to the cost of 1DS hardware. These systems are available in the
neighborhood ot $1000 (or less).

Larger 8-bit microcomputer configurations are applicable to more serious
computing. These include more memory (around 64K) and more peripherals (at a

minimum, floppy disks and a printer). There are a number of companies making

systems which fall into this category, including: NORTH STAR, Cromemco,

and Vector Graphic.

Note that the Apples, Commodores and TRS-80s can be configured in this
category. Particularly noteworthy is the fact that for under $2000 it is

possible to obtain a microcomputer with display, keyboard and floppy disk

drives (Osborne I).

Systems based on 16-bit processors offer somewhat more computing power in most
cases, although there is some overlap between the more powerful 8-bit machines
and some ot the less powerful 16-bit ones. Systems based on the 8086, Z8000

and 68000 are offered by the chip manufacturers (Intel, Zilog and Motorola) as
well as by numerous other companies.

Western Digital has built the Pascal Microengine to execute P-.code which was

originally designed for interpretive execution. The Microengine uses the same
chip set as the LSI-ll, but with different microcode. The Pascal Microengine

is being upgraded to be an Ada Microengine. A system with 128K bytes of

memory and a single floppy disk drive sells for about $6900.

IBM has two microcomputer offerings. The smaller series is 8088-based and

18

JOVIAL/Ada Microprocessor Study Final Technical Report

sells for under $1600 in a minimum configuration. A larger version includes
64K, a floppy disk drive and a display for about $3000. The system is
scheduled for delivery in October 1981 and is expandable to 256K bytes.

The other microcomputer series for IBM is the System/23, which is based on the
Intel 8086. This system includes 64K RAM, 2.2 MB of diskette and a matrix
printer for about $9400, and is already available.

Multi-User Systems

There are a number of different configurations for multi-user systems. Some
of the smaller ones are based on 8-bit processors (typically Z80s).
Multi-user configurations include traditional timesharing (one processor
serves many users), and multi-processors with more than one user per
processor. Even among the multi-processor setups there is disparity. Some
are arranged as workstations on a network (similar to the Ethernet setup
[Metcalfe76]); others have multiple processors in one chassis, providing a
real machine for each user, where timesharing would only give the user a
virtual machine.

One of the simpler and more inexpensive multi-user systems is the CT-80 system
by Digiac. It is based on the Z80 and can handle up to four users in the
largest configuration.

Action Computer Enterprise, Inc. has a Z80 based multiprocessor system with
S-100 bus compatability. The system consists of a Z80 and 64K bytes for each
user plus a service processor which handles shared resources. A two user
system (with two user processors and a service processor) sells for under
$6000. Additional user processors (z80 + 64K bytes of memory) sell for about
$1400. Peripherals are additional. A set of dual floppies costs about $2400,
a 10M byte Winchester with controller about $3600, and a 26M byte Winchester
around $4900. It is interesting to note that the CPU and main memory for a
user costs less than even a set of floppy disks, and less than half that of a
hard disk.

There are a number of Z8000 based multi-user computer systems avail'ble. One
is Zilog's System 8000 which Zilog says has outperformed the PDP 11/70 in some
benchmark tests [McCauley8l]. This system *is a traditional time-sharing
configuration with a single Z8001 CPU. (Other micros are used for disk
controllers.) Memory can be as large as 1M byte for the system. Unsegmented
user programs can address up to 128K bytes (divided between code and data),
and segmented programs can address up to 128 segments of 64K bytes each. The
system uses Zilog's 8010 memory management units. The operating system on the
System 8000 is Zeus, a modified version of UNIX. An eight-user system costs
about $30,000.

19

JOVIAL/Ada Microprocessor Study Final Technical Report

Another Z8000-based system is the System X8000 from Computex. This system
also uses the Z8001 as its CPU, but uses the Multibus. Total memory size may
be up to 16 MB. The AMD (Advanced Micro Devices) 9511 floating point
processor is available optionally.

The Computex system includes a memory mapping scheme which provides both
segmentation and paging. Thirty-two segments are addressable without
remapping. Sixteen different maps are available for sixteen different
programs. The program number and segment number are used to compute a segment
address and the segment address and the high 5 bits of the address are used to
compute the page address.

This is an interesting memory mapping scheme because it allows users to share
programs, but also to maintain separate address spaces without requiring a
change of the map registers at a context switch.

ZMOS, the operating system which is available on the X8000, allows multiple
users and multiple processors. It includes an Indexed Sequential Access
Method (ISAM) file handler which allows multiple keys per file. There is also
a database inquiry subsystem.

MC68000 Based Systems

In recent months a number of companies have brought out 68000 based
microcomputers: Hewlett-Packard, Wicat, Computhink, Empirical Research Group,
MicroDaSys, Forward Technology and Dual lInfoworld, Sept. 14, 1981].

Wicat systems has several 68000-based configurations. The System 150 is a
workstation which is based on the Multibus and includes 256K bytes of RAM, a 5
1/4" floppy and a 10M byte Winchester with controllers for $8500. RAM may be
expanded up to 1M byte.

The System 100 uses a proprietary bus and includes 256K bytes of RAM, a 20 MB
Winchester with tape backup for about $21,500. Up to 6 MB of RAM can fit in
the standard cabinet and the system can address a total of 14 MB.

One of the more interesting, though expensive, approaches to 68000-based
systems has been taken by Apollo with their DOMAIN system. The DOMAIN is a
network which is based on the workstation concept which was popularized by
Xerox in their Ethernet. Each workstation has a bit map display, two 68000s,
memory and peripherals. There are two classes of peripherals: Those which are
integral to the Apollo system are connected to a block multiplexor channel.
Other peripherals are connected through a Multibus.

Individual nodes may have from 256K to 1MB of main memory. One particularly

20

JOVIAL/Ada Microprocessor Study Final Technical Report

interesting feature of the nodes is that they provide multiple virtual
terminals, so it is possible to monitor several independent processes at once.

The network itself is a ring structure which passes two-address packets at a
rate of 10 M bits/second. There is a network virtual address space which
allows one node to reference data which is stored at another node. This
virtual address includes an object identifier and an address within the
object.

A basic node (with 256K bytes) costs $24,000, and a mass storage expansion
unit (with a 33 MB Winchester and I MB diskette) $10,000. Not all nodes in
the network need to have peripherals, but at least one does.

Conclusions

At the present time, the 68000 seems to be the microprocessor of choice on
which to base a development system, followed by the Z8001 and the 8086 (or
8088) in that order. Systems which only provide 64K addressability, including
some or the older 16-bit architectures and virtually all of the 8 bit
processors, are not large enough to support a production compiler for full
Ada. Such systems could be very economical for subsets, however.

The Wicat 150 is notable in that it provides substantial capability for a
reasonable price. The combination of the 68000 and the Multibus is
particularily attractive.

[Franta8O] provides a view of system selection.

3.7 Future Microprocessors

In the future it is virtually certain that significant advances will be made
with respect to microprocessor capabilities. Some of the advances are not
particularly relevant to this study. For instance, although decreased power
consumption is important to hardware system designers and embedded computer
applications, it does not have a direct effect on software development.

There are three expected developments which are very much relevant to
software, though: increased processor speed, larger word size, and virtual
memory.

Currently, the time required to perform a register to register addition is
around 300ns for a fast MOS processor (e.g., an 8086 with a 10MHz clock).
Bipolar technologies give somewhat greater speeds. Times of 20ns have been
predicted for 1985 [Wise80].

21

JOVIAL/Ada Microprocessor Study Final Technical Report

Another major enhancement which seems imminent is the increase in word size to
32 bits. There are already 16-bit word machines which perform a limited
amount of 32 bit arithmetic. Most of the newer 16-bit processors provide
doubleword addition and subtraction. Several 32-bit machines have already
been announced.

Intel has announced the iAPX 432 [Intel8I, Hemenway8l, a 32-bit machine with
a System Implementation Language (SIL) which is purported to be a superset of
Ada. The iLAPX 432 is easily the most impressive microprocessor announced to
date; in some respects it is more impressive than mainframes. Some early
reports implied that the iAPX 432 executed Ada programs directly. This is not
the case; programs must be compiled [Zeigler8l]. However, the architecture is
unconventional in a number of ways. It is an object based architecture.
Protection is based on objects, rather than being on a user-by-user basis. No
registers are visible to the programmer; operands come from memory or the
stack. Instructions are bit-addressable; no alignment is necessary, nor are
they required to be an integral number of bytes long. Multi-process and
dynamic storage allocation mechanisms are present in the hardware. There is a

very large (2**40 bytes) virtual address space.

Intel has also announced three more conventional microprocessors: the iAPX
186, the iAPX 188 and the iAPX 286, which will be upward compatible with the
iAPX 86 (more commonly called the 8086). The iAPX 186 will be faster than the
8086 and will have some high-level language enhancements in the instruction
set. The iAPX 188 has an 8-bit path to memory.

The iAPX 286 offers virtual memory and hardware support for such functions as
context switches and operating system calls. Addressable memory is 16MB
(physical) and 1 gigabyte (virtual).

National Semiconductor [National Semiconductor8l] has also announced a 32-bit
machine, the 16032. This machine will have a facility for implementing
virtual memory. It will provide 16MB addressability directly or 32KB with a
Memory Management Unit (NMU). There will be facilities for handling floating
point numbers, arrays and strings of bits. A hardware breakpoint facility
will be provided. Another novel feature is the use of a module map for
external references so that if one module is changed (in ROM), other modules
need not be recompiled or relinked.

National Semiconductor has also announced the 16008 and 16016, which are less
powerful than the 16032, but are of interest because they will have two
instruction sets, their own and that of the 8080. Through the use of escape
operators it will be possible to switch back and forth between the two
instruction sets.

Zilog has announced the Z8003, which is essentially a Z8001 with virtual

22

JOVIAL/Ada Microprocessor Study Final Technical Report

memory capability [Electronics, June 30,19811, and is vorking on a 32-bit
micro.

Other companies vhich are said to be developing 32-bit microprocessors are
ATT, IBM, HP, MOS Technology (Electronics, April 21, 1981, p. 1241, and Nippon
Telegraph and Telephone [Electronics, June 2, 1981.

Fujitsu [Inui81] and Toshiba [EDN, February 4, 19811 have announced 16-bit
microprocessors, each o which is capable of addressing 16MB.

Mikros has announced a microprocessor version of the MIL-STD-1750A
architecture [Electronics, July 28, 1981]. The implementation is
Silicon-on-Sapphire (SOS) and will execute 200,000 instructions per second (.2
MIPS).

23

JOVIAL/Ada Microprocessor Study Final Technical Report

4. MICROCOMPUTER SYSTEM ADVANTAGES

There are a number ot advantages to using a microcomputer as a development
system. These include:

1. Lower hardware cost.
2. More localized control of the computer system.
3. Guaranteed response.
4. Better security.
5. Fever communication problems.
6. High bandwidth.
7. More reliable transfer of media.

4.1 Cost

A microcomputer system with a floppy-disk can be purchased for about $6,000.
It is possible to spend that much for time-sharing for a few users in just a
matter of weeks. Even with a hard disk it is possible to buy a microcomputer
system for less than $10,000, although some of the larger systems exceed this
figure.

The fact that hardware costs are so much cheaper for microprocessors opens up
additional possibilities for configurations which would not be possible with
more expensive hardware. It becomes possible to give each user his own CPU,
because the economics have changed. Previously, it was unthinkable for the
CPU to be idle, since the cost of the computer was so great. Now, it costs
more for a programmer to be idle waiting for the machine, than it does for a
machine to be idle waiting for the progra-mer.

Another effect that microcomputers have had on costs is with respect to
software. Since the hardware is so inexpensive, more computers are sold, so
there is a bigger market for software. Thus, it is possible for software
producers to take advantage of the economies of scale and to offer individual
copies of software at a fraction of the development cost, making up the
difference in volume.

4.2 Localized Control

The fact that a microcomputer system is too small to be used by a large number
of progrmers means that the control over the machine is likely to be at a
lower level than for a larger machine. There is less likely to be a conflict
between different groups for the use of computer resources.

24

JOVIAL/Ada Microprocessor Study Final Technical Report

4.3 Response Time

The response time for a single-user system is consistent, since there are no
other users contending for system resources. Consistent response has been
shown to be an asset, even if the response is not particularly fast
[Miller77j. Although the performance of a microprocessor-based workstation
would not be the equal of a lightly loaded mainframe, it would be
significantly better than that of an overloaded one.

4.4 Security

It should be noted that the use of the word "security" here refers to the
prevention of unauthorized access to the machine, rather than the protection
of the operating system from the users or the users from each other.

It would be easier to maintain the security of a microcomputer system than of
a larger system because access could be restricted to fever individuals. If a
large machine is to serve a large number of users, all must have access to the
system. It would be the responsibility of the operating system to prevent an
unauthorized user from accessing data which is not supposed to be available to
that user. The problem of unauthorized access is compounded if there are
dial-up lines to the system. A microcomputer system can be physically
isolated, thereby making unauthorized access more difficult.

Another aspect of security is the fact that it is not permissible to have
classified and non-classified users on a single system at the same time.
Since microcomputer systems can be smaller and cheaper, it is possible to have
several complete systems for the cost of a larger system, allowing both
classes of users to work simultaneously on physically distinct systems.

4.5 communication

Since the microcomputer system will have fewer users than a large system, it
is possible for them to be in close enough physical proximity to the machine
for hardwired terminals to be used. This will eliminate problems of noisy
phone lines and loss of carrier.

4.6 Hitth-bandwidth

A related benefit of having hardwired terminals is that it is possible to
obtain good performance from screen-oriented text editors, without requiring
expensive communications equipment. These screen-oriented editors are both
easier to use and less error-prone. They are easier to use because indicating
where a change is to be made can be done by positioning the cursor. They are
less error-prone because a change made to the text is reflected by the display
on the screen, and because a larger context is visible to insure that the text

25

JOVIAL/Ada Microprocessor Study Final Technical Report

being changed is really the text which was intended to be changed.

Although high-bandwidth te-minals are available for larger systems also, it is
conion for the larger systems to be served by dial-up lines to alloy users
spread over a vide area to access the computer. The fact that microcomputer
systems are smaller and do not require special air conditioning, makes it
easier for the machines to be near to the users.

4.7 Media Transfer

Paradoxically, there seems to be a greater problem transferring media between
large computer systems than between microcomputers. It is not uncommon for a
tape written at one installation to be unreadable at another. On the other
hand, we have had no such problems with floppy disks.

26

JOVIAL/Ada Microprocessor Study Final Technical Report

5. MICROCOMPUTER SYSTEM DISADVANTAGES

In addition to the obvious limitations on microprocessor systems such as
speeds and capacities, there are some more subtle differences between using a4
large timesharing system and a microprocessor-based system for development. A
centralized system allows costs for services to be spread over a large number
of users, where it would be impractical to provide the same services on a
machine with a smaller number of users.

5.1 File backup

One such service is the automatic backing-up of files. Most large systems
automatically (at least from the user's point of view) save disk files on
tape. While the periodicity for this service varies from system to system,
some such facility usually exists. On a micro-based system, file backup is
normally the user's responsibility.

5.2 Maintenance

Maintenance is another service provided by personnel associated with large
computer systems. For smaller systems, it would be impractical to provide
such personnel. It is likely that the users of the system would bear a larger
responsibility in this area also, at learnt to the extent that they would need
to be able to determine that a hardware problem existed and to sumon
assistance.

5.3 Software Distribution

Another problem which would be more acute is that of the distribution of
system software, coon utilities and interface descriptions. The logistics
of maintaining software on a large number of small systems would be more
complicated than maintaining the software on a smaller number of large
systeus. It would be necessary for greater numbers of people to be in
comunication with the software maintainers since each copy of the software
would serve fewer users. Additionally, any time there were revisions made to
the software or interfaces, it would be necessary to install them on a greater
number of systems than if the users were served by large systems.

5.4 Syappint/Plging

Large systems generally have special peripherals to speed up swapping or
paging. The devices used may be drums, fixed-head disks, or, more recently,

27

JOVIAL/Ada Microprocessor Study Final Technical Report

semiconductor disk emulators. These devices eliminate seek time, greatly
improving performance when 1/O requests do not involve sequential accesses.
Such devices are not yet economical for microcomputer systems, since the cost
of such a peripheral would greatly exceed that of the rest of the system
components.

5.5 Machine Simulation

One method of program development which would not be as effective on some
micros is machine simulation. A simulator for the target machine can be
written on the development system and programs which will be run on the target
can be checked out on the development system. In addition to providing
additional debugging facilities, such as instruction traces and breakpoints,
simulators can be used so that software can be checked out before the target
hardware is available.

While simulation is costly in terms of CPU time required, nonetheless, on a
fast machine, the real-time performance is acceptable. On certain
microprocessors, however, there would be a marked performance degradation as
compared with direct execution on a target machine. For some applications
which are not CPU-intensive, the performance decrease would be acceptable.
There are a number of applications f or which the UCSD P-code interpretation
gives acceptable performance, and the P-code is at roughly the same level as
the instruction sets of some of the more powerful microprocessors. For other
applications, however, the decrease in performance is noticeable. One example
is that of searching for a character string in a file which has already been
read into main memory.

This is only a problem on the less powerful microprocessors, however. Some of
the more powerful microprocessors (such as the more recent 16 bit machines)
are faster than some larger machines, at least for operands which are no
longer than 16 bits. For certain CPU-intensive jobs, it is possible to
achieve better performance on the more powerful micros than on some older
mainframes, such as the DEC-10 KA10 (see Appendix M).

If a good development system is hosted on a microcomputer, it is likely to be
used for targets which differ from the host microprocessor. This would
require some form of simulation, were the application to be checked out on the
development system.

28

JOVIAL/Ada Microprocessor Study Final Technical Report

6. PROSPECTS FOR A MICROCOMPUTER-HOSTED DEVELOPMENT SYSTD

The present state of microprocessor technology is such that it can safely be
said that it not only will be possible to host a useful development system on
the hardware which vill be available in 1985, but that today's hardware is
already sufficient. Although microcomputers are not vell-suited for projects
which require enormous databases, they are more than adequate for
moderate-sized projects.

Most ot the tools which are traditionally part of development systems should
be hostable on a microcomputer with no particular problems. Such programs as
editors, linkers, loaders, document formatters and file manipulation utilities
exist on current microprocessors. While the existing programs do not always
meet "production" standards for features (e.g., editors may be restricted to
modifying files which can be held in memory or linkers may not support
overlaying), they are sufficiently close that success at hosting "industrial
strength" versions on a microcomputer may be safely predicted.

Most ot the tools mentioned above can be hosted on a microcomputer without a
redesign effort. There are other tools and parts of the Ada Programing
Support Environment (APSE) [Stoneman80], however, which may be restricted in
scope or require a redesign if they are to be hosted on a smaller machine.
These include the operating system itself, the debugger, the configuration
manager and the Ada compiler.

The operating system on a microcomputer will be less elaborate than that of a
larger machine. The original KLIO Monitor for the DEC-10 required about 90K
36-bit words (which translates roughly to 405K bytes) [Bell, 1978, p.506].
This is too large to be economical for a present-day microcomputer. (It could
be done but it would result in a system far larger than a minimal system. It
is interesting to note that the original PDP-6 Monitor took only 6K 36-bit
words, or about 27K bytes Ibid]).

In Stoneman [Stoneman80] the possibility of an APSE running on a underlying
host operating system is discussed. It may not be possible to afford the
overhead of having an APSE running on a host operating system on a
microcomputer, Thus, it may be necessary to have a KAPSE which runs on a bare
machine.

6.1 Compiler

The compiler is the largest tool in the system, and is the most important
single factor, other than the application itself, in determining how big the
microcomputer need be. J73 and Ada are both large languages; Ada is the
larger of the two. Since these languages are large, their compilers are

29

JOVIAL/Ada Microprocessor Study Final Technical Report

necessarily larger than those for simpler languages such as Pascal. There are
available a number of loy-cost microcomputers capable of hosting Pascal
compilers. However,' many of these systems are limited to 64K bytes per user
because the CPU uses 16 bits for addresses. It is doubtful that an Ada
compiler could be hosted on such a machine without suffering an unacceptable
performance degradation. A compiler for a subset of Ada, however, could be
hosted on that type of system. Because the statement of work forbade the
consideration of subsets, performance estimates in this report are based on
the assumption that the compiler implements the entire Ada language. It must
be remembered that hardware costs would be lover for a system capable of
hosting a subset of the language than for one which could host the entire
language.

6.2 Debugger

It is certainly possible to put a debugger on a microcomputer. Indeed, there
are several debuggers which run under CP/M and which allow memory contents to
be displayed and modified and breakpoints to be set. However, if a
source-level debugger is desired, there may be some problems, even on a larger
machine.

In order for the debugger to be at all useful, it must be able to access data
which, according to Ada scope rules, should not be visible to it.

The optimizer phase of the compiler will be in conflict with the debugger,
since code optimization tends to obscure the relationship between the source
and object. Optimizations such as dead code elimination, code motion, global
register allocation, folding and dead store suppression may cause confusion
due to an apparent discrepancy between the source and the code executed.
While these optimizations give the correct results with respect to the final
output, the intermediate program states may appear incorrect.

Consider the following program fragment:

I:[1]
K:-I; [2]
I:-L; [3]

An optimizer may treat the program as if it had been written:

K:-J; [4]

I:-L; [5]

If the user requests that the value of I be printed after the execution of
[li, the value ot I may bear no relation to J due to the fact that J has been

30

JOVIAL/Ada Microprocessor Study Final Technical Report

folded into [2) giving [4], and [1] has been suppressed.

Another problem which appears to be more serious is that of debugging multiple
t~msks. Note that this problem is peculiar to Ada and does not apply to J73,
which does not provide tasking facilities.

A problem which is more acute on a microcomputer is that of space, both for
the debugger while it is executing and for the debugger tables on disk. if
the target CPU and the development system CPU have the same amount of memory,
and the application program's size is near to that of the target, there will
not be enough room for both the debugger and the application. The internal
symbol dictionaries (ISD's) for the application are potentially quite large.
This could be a problem on a system which didn't have much disk storage
available.

6.3 Configuration Management

On a large system, an elaborate configuration management scheme may be
necessary to keep a project from getting out of control. It is necessary to
be somewhat more conservative on a microcomputer-based system. The facilities
provided by a number of popular microcomputer operating systems are rather
limited in this regard although some do provide date/time staps and the
ability to mark files as being read-only. Additional facilities are required
for a serious development system to make it easy to maintain distinct versions
and revisions of programs.

31

JOVIAL/Ada Microprocessor Study Final Technical Report

7. COMPILERS

The compiler is the tool which is likely to be the most difficult to host on a
small machine. It is here that a microprocessor's speed and space limitations
become acute. There are a number of compilers available on microcomputer
systems. The languages they support include Pascal [Jensen74, JRT80,
Sorcim79, UCSD78, Intersystems8O, and Microsoft80], BASIC, subsets of FORTRAN
and COBOL and, more recently, subsets of PL/I [Digital Research8O] and Ada.

Since this study began, three companies (Telesoft, Western Digital and Digital
Electronic Systems) have announced Ada compilers which are hosted on
microcomputers. At the present time these compilers are incomplete
implementations of the language. A fourth (RR Software) has announced a JANUS
compiler which is said to compile a subset of Ada.

The languages that these compilers support are substantially smaller than
either J73 or Ada. In addition, the compilers lack a number of features that
are normally found in production compilers.

Pascal compilers were examined during the course of this study for several
reasons. First, there were a variety of different implementations to choose
from (compiled and interpretive). Second, except for Ada itself, of the
microcomputer languages, Pascal is the one which most resembles Ada.

It should be noted that the Ada compilers were not available at the time the
Pascal compilers were being studied.

7.1 Language Features

It is useful to compare language features to obtain some idea of how much
different a compiler for J73 or Ada would be than one for Pascal. The
following is a list of some of the major differences between J73 and Pascal.

Features which J73 has but Pascal does not:

I. Source macros (defines)
2. External procedures (although some implementations of

Pascal allow them)
3. Compools
4. Character string variables (although some

implementations allow them)
5. Specified tables
6. Parallel tables
7. Tables with multiple entries/word (tight tables)
8. Tables with variable dimensions (star tables)

32

JOVIAL/Ada Microprocessor Study Final Technical Report

9. Bit and byte functions
10. Status lists (with user specifiable values)
11. Overlays (for allocation of data)
12. Presets
13. Inline procedures
14. Reentrant procedures
15. Conditioral compilation
16. User-specified procedure linkages
17. Fixed-point arithmetic
18. Compile-time arithmetic

Features of Pascal which are not in J73 include:

1. Sets (although bit strings can be used to simulate them)
2. Subranges/range checking
3. Input/Output
4. Variant records (although specified and LIKE tables can

be used to simulate them)
5. Records of arrays

The following lists enumerate some of the differences between Pascal and Ada.

Features of Ada which are not in Pascal include:

1. Separate Procedures
2. Packages

3. Generics (user-defined)

4. Overloading
5. Aggregates
6. Slices
7. Tasking
8. Exceptions
9. Enumeration types with user-specified values

10. Arrays with dynamic bounds
11. Fixed-point arithmetic
12. Representation specifications for records
13. Inline procedures
14. Array Catenation

Features of Pascal not in Ada include:

1. Sets

A discussion of the translation between Pascal and Ada can be found in
[Albrecht80].

33

JOVIAL/Ada Microprocessor Study Final Technical Report

7.2 Comparison of J73 and Pascal Compilers

Two microprocessor Pascal compilers were selected for comparison: UCSD Pascal
[UCSD78] and Pascal/Z [Intersystems8O]. They were chosen because they
represent two different approaches. UCSD Pascal generAtes P-code which is
interpreted except when it is run on a Pascal Microengine .Western Digital].
Pascal/Z was selected over other low-priced compilers because it generated
native code, and, at the time it was obtained, it was the only one which
implemenLed virtually the full language.

In addition to the fact that Pascal is a smaller language, there are a number
of other differences between the existing J73 compilers and microprocessor
Pascals. These include:

1. Quality of code produced
2. Compiler listing options
3. Compiler outputs

The level of optimization in the SEA J73 is higher than that found in the
microprocessor Pascals (USCD and PASCAL/Z) which were examined in this study.
The UCSD compiler generates straightforward code and PASCAL/Z does some local
optimization, but neither does any regional analysis.

Production compilers normally generate cross reference and attribute listings,
define expansions, and assembly listings. Microprocessor Pascals typically do
not provide such listings. It is possible to get an assembly listing from
PASCAL/Z, but only because the compiler generates macro code which is then run
through an assembler. Other listings such as reformatted source and compiler
statistics (e.g., types of statements, tokens, etc) are not available from the
Pascals.

Compiler outputs such as reformatted source files, and compool files, are not
available from the Pascal compilers. Relocatable object modules are not
generally available. In the case of Pascal/Z, the relocatable is output by
the assembler rather than the compiler.

Although it is a PL/I rather than a Pascal compiler, PL/I-80 does possess a
number of these features. It does generate relocatable object modules,
assembly listings and attribute listings. It is, however, a multi-pass
compiler [Infoworld, Sept. 1, 1980].

The microcomputer Pascals, in general, run in 64K bytes or less. The two
mentioned above both run on a 56K (byte) system, although each is rather
cramped in such a region. In order to compile a 400 line benchmark program
through Pascal/Z, it was necessary to break up the benchmark. The UCSD Pascal
compiler could compile the entire benchmark in swapping mode, but was unable

34

JOVIAL/Ada Microprocessor Study Final Technical Report

to compile one of the pieces with swapping turned off. In contrast, the
individual phases of the SEA J73 compiler are substantially larger. The
largest phase in the DEC-10 implementation requires 61,040 yards (roughly the
equivalent of 274,680 bytes), while the IBM 3033 version takes 81,428 words or
325,712 bytes (see Appendix A).

The difference in compiler sizes is apparent on disk also. Pascal/Z takes
56K. The UCSD Pascal compiler takes 35K. The SEA compiler on the DEC-10
takes about 1.2 megabytes (see Appendix B).

In order to get a better feel for the problems which would be faced in trying
to achieve acceptable compiler performance on a microprocessor, compiler
statistics were gathered and some benchmark programs were created. There are
three conflicting goals in hosting a compiler on a microprocessor: making the
compiler small, making it fast, and generating efficient code. While the
first two goals also exist on large systems, they are not as critical there.
The third is more a function of the target than of the host, hut it compounds
the problems of trying to meet either of the other goals.

The size of the compiler is dependent on several factors including design,
implementation technique and code expansion. The design is the single most
important factor. Since the SEA and JOCIT compilers were designed to run on
large systems, it was possible to have only 5 passes, in order to minimize the
amount of I/O to temporary files for communication between phases. Another
design decision which sacrificed smallness for the sake of speed in the case
of the SEA compiler, was to have a resident symbol table. A different design
would have made it possible to ease the compiler's space requirements, at the
cost of a decrease in speed.

Implementation techniques which can be used to keep compilers small include
the use of interpreters and reusing one-time initialization code as buffers.
Interpreters can come into play at several levels. The compiler source may be
translated to an interpretable form (such as P-code) and interpreted. This is
the technique used in the UCSD Pascal compiler. Another possibility is to
write an interpreter as part of the compiler and have parts of one or more
phases table driven.

If the compiler is written in a high-level language, then its size will be
determined, in part, by the type and quality of code generated by the compiler
through which the compiler itself is compiled. As mentioned above, one
possible alternative is to generate interpretive code. Even so. there can be
differences in the amount of code generated per line of source. Native code
can be expected to take more room than interpretive code. Threaded code
I 1e1173J is a compromise between the two, providing faster execution than
interpretive code, but requiring less room than native code.

35

JOVIAL/Ada Microprocessor Study Final Technical Report

7.3 Microprocessor Ada Compilers

Telesoft

The Telesoft Ada compiler is hosted on 68000-based microcomputers and
generates native code for the 68000. The compiler is coded in Pascal and is
composed of three phases. The first phase is the front end, the second
translates from one form of IL to another, and the third is the code
generator. The compiler operates on a 256K (byte) system. About 300KB disk
space is required for the compiler.

Although the implementation is not yet complete, a healthy subset of the
language has been implemented including: packages, some tasking, and
exceptions (except for anonymous blocks). Still to be implemented are:
generics, representation specifications, complex overloading, and those
aspects of tasking which involve the clock.

We had the opportunity to run some benchmarks through this compiler. (The
results are shown in Appendix J.) At the time the compiler was hosted on an
8MHz 68000 with a Q-bus and a Winchester disk. For one rather informal test
compile speed was slightly over 250 lines/minute (wall clock). This
particular compiler was compiled with range checking turned on; with checking
turned off it would be faster and smaller. (The J73 compiler statistics are
for compilers without range checking; thus, comparisons of compiler speed
between J73 and Ada would be unfair without taking this into account.) It
should also be noted that the Q-bus is slow relative to the 68000, and does
not allow the CPU to run at full speed. We have been informed by Telesoft
that the compiler has been hosted on a 68000 with on-board memory and now runs
at over 550 lines/minute.

Western Digital

Western Digital has an Ada compiler which runs on their Microengine. It also
is an incomplete implementation at this stage.

Digital Electronic Systems

Digital Electronic Systems has advertised an Ada compiler for a variety of
hosts and targets. They plan a phased implementation with a goal of compiler
certification. We have been unable to obtain any hard information about this
system.

36

JOVIAL/Ads Microprocessor Study Final Technical Report

RR Software

RR Software advertises a Janus compiler, which is for a subset of Ada. It
appears that the subset currently implemented is roughly equivalent to Pascal
with the addition of packages.

7.4 Characteristics of J73 Code

The statistics collection feature of the SEA J73/I compiler was used to obtain
information about the types of statements and operations which actually appear
in the J73 compiler. (Note that the J73 compiler studied was implemented in
J73/1). It should be noted that these statistics obtained are for a
particular compiler design and implementation. One aspect of the compiler
design which has a great impact on the results obtained is the fact that the
symbol table is resident and is treated as an array. A compiler which has a
non-resident symbol table, or which uses pointers rather than subscripts as
symbol table pointers would exhibit different characteristics.

The statistics which have been compiled are shown in Appendices H and I.

A number of observations can be made based on these figures. The first is
that a relatively small number of token types account for the majority of the
tokens which appear in the program. This implies that if efficient code (in
terms of space) is generated for these types of tokens, that the overall code
will be small. Conversely, optimizations performed for most operators will
actually have little effect on program size.

The token which was the most common by far was PRIM, which represents an
operand. Two other common tokens are SUBS and AT which are used for
subscription and pointer dereferencing. For the IBM 360 compiler MUL,
(multiplication) was also common. On the DEC-10 multiplication was far less
common. On the 360 a multiplication by 4 is inserted for each subscript
operation because the 360 has four bytes per word. The code generator and
optimizer change these multiplications to shifts or include them in constant
offsets.

Other tokens which occurred often were STNO (statement number) and ATTR (set
the attributes of a operand). Neither of these operators causes code to be
generated. The fact that STNO is common indicates that if debugging code were
to be inserted at each statement, the effect on the size of the object program
would be great. Another implication of the relative frequency of STNO
operators is that the average number of operators and operands per statement
is small.

Two other operators which were quite common were REPL and PARM. REPL

37

JOVIAL/Ada Microprocessor Study Final Technical Report

(replace) is the assignment operator and FARMI is used for passing parameters.

Thus, of the common tokens for which code is actually generated (this excludes
STNO, AT and LABL (label definition)), almost all are concerned with
addressing operands rather than performing operations on them. If subscript
multiplications are excluded, the most common arithmetic operators are
comnparisons, which occur far less frequently than any of the tokens discussed
here.

Thus, it can be seen that operand addressing is an area where there is
potential for a high payoff for optimization. A number of machines have short
and long forms for addresses. Making good use of such machine features is
important in reducing the size of object programs.

Note that the statistics discussed here are static. Thus, it is not possible
to draw any conclusion as to fruitful areas for execution speed optimizations
from these statistics.

7.5 Compiler Code Expansion

The statistics obtained were used to select three procedures which
collectively reflect the composition of statements and operators found in the
compiler. Actual procedures from the compiler were used in order to better
reflect the usage of language constructs -- in particular, the interaction
between statements (e.g., for common subexpression elimination).

The benchmark programs were compiled on the DEC-10 using the SEA compiler and
translated into Pascal to be compiled using both the UCSD and Pascal/Z
compilers. The translated versions followed the original J73 as closely as
possible. Some modifications had to be made to allow for the fact that Pascal
does not have external procedures (although the UCSD implementation permits
them), a bit substring operator, nor a return statement. The external
procedure references were handled by including dummy internal procedures. The
code for these dummy procedures was excluded from the totals. BIT functions
which selected a single fixed bit were replaced by references to boolean
variables. There was one use of a bit string with a variable first bit which
was translated to a set membership operation. Return statements were
translated as gotos to labels at the end of the appropriate procedures.

Figures obtained during this study (see Appendix G) indicate that the sizes
(in bits) of the code generated by the DEC-10 compiler and that generated by
the Pascal/Z compiler are approximately the same, while the P-code generated
by the UCSD compiler is approximately 60% smaller. No allowance has been made
for the size of library routines required by the J73 and Pascal/Z versions or
the size of the UCSD interpreter. In addition, the data in J73 were

38

JOVIAL/Ada Microprocessor Study Final Technical Report

statically allocated (in the J73 rather than Pascal sense of the phrase) while
the data for the Pascal compilations were allocated on the run-time stack.
The sizes of the procs are only for the code, but there would have been some
differences in the code generated for the J73 compilation, if the data had
been dynamic. Table references, in particular, would have required additional
code on the DEC-10.

If, indeed, the 60Z size reduction figure held for the entire compiler, then
the SEA compiler would require about 110K bytes, exclusive of symbol table
space and room for the operating system and P-code interpreter. This would
allow only about 18K to be used for the systems the interpreter and the symbol
table on a 128K machine.

It would, however, be difficult to achieve this size reduction because the
P-code machine upon which the figures are based, handles integers and
addresses which are a maximum of 16 bits long. A provision would have to be
made to allow addresses which are longer. This will have an impact both on
the size of the interpreter and on the size of the code. In addition, only
small reductions are possible in the size of the data, since most of the
significant tables in the compiler are both packed and global. (The symbol
table is the prime example of such a table.)

7.6 Coinpilation Speeds

As was mentioned previously, speed of compilation is another important
consideration. Unless programs can be compiled at a speed of several hundred
lines per minute, the delay when a large module is being compiled will be so
great as to turn the system into what amounts to a batch system with
interactive editing.

Some timing statistics were obtained using the SEA J73/I compiler to get a
better picture as to what sort of compilation speeds can be expected on a
mainframe. There are several speeds which are relevant to the useability of a
compiler. The most important from the user's point of view is the wall clock
time since that is the measure of when the compiler's output is ready to be
used. The speed of the compiler with respect to lines per CPU minute is less
important with respect to programmer productivity, although it can exert an
influence both on the wall-clock time required and system throughput.

The performance figures for compilations of six different modules, ranging
from just under 3000 to almost 6000 lines are available (see Appendix C). The
compilations were performed using the SEA J73/I compiler on a DEC-10 1110
under the TENEX operating system. Real-time compilation speeds ranged from 235
lines/minute to 2300 lines/minute. It is interesting to note that this 10:1
difference in performance was obtained for two compilations of the same

39

JOVIAL/Ada Microprocessor Study Final Technical Report

module. This difference is due entirely to the load on the system. Lines/CPU
minute figures were in the range 4200 to 6800.

These figures were obtained for compilations with the listing options turned
off. In particular, no cross reference listing was requested. In another run
not reported above, a cross reference listing was obtained. The CPU time
required increased by one-third, and although the lines/CPU minute figure was
lower than any of the others by over 1000 lines/minute, the wall-clock
lines/minute fell in the middle of the group.

Appendix D contains figures obtained on a KIl0 running the TOPS-10 operating
system. The perceived speeds are in the same range, although the lines/CPU
minute figures are lower due to the slower CPU.

A useful microprocessor development system does not need even to approach the
CPU speed shown by the compiler on the DEC-10 since the DEC-10 user must share
the CPU with numerous other users. While the microprocessor is leas powerful
than a mainframe, there would, presumably, be fewer users on the
microprocessor, so it should be possible to achieve reasonable performance by
limiting the number of users.

Compilation speeds were obtained for two different Pascal compilers on a North
Star Horizon. The Horizon is based on a Z80 microprocessor with a clock speed
of 4 MHZ. Peripherals on the system on which the tests were run include dual
5 1/4" floppy disk drives, a CRT and a printer. The disk has a transfer rate
of 250K bits/second, an average latency of 100 ms and an average access time
of 463 ma. [Shugart77]. The disks are formatted with 10 sectors/track and 35
tracks/disk. The disks are double density with 512 bytes/sector and 175K
bytes/disk. One of the most important facts to be noted about this system is
that it uses programmed I/0 rather than interrupt-driven Direct Memory Access
(DMA). This can have a significant effect on speed of execution, since the
CPU is effectively idle whenever I/0 is being performed.

In contrast, a cartridge disk such as the RL01 holds over 5 megabytes, has a
transfer rate of 512K bytes/second, an average latency of 12.5 as and a seek
time of 55 ms [Dec80]. Winchester disks have comparable specifications.

The two Pascal compilers on which the test cases were run ae the UCSD Pascal
and the Pascal/Z compiler. The UCSD Pascal compiler is itself written in
Pascal. Its execution is interpretive, since it has been compiled to P-code
rather than native code. The P-code contains several operations which are
intended specifically to enhance compiler performance. These include the
treesearch and idsearch operators [UCSD78].

The compiler is one pass, but may be operated in swapping and non-swapping
modes. Swapping mode causes slower execution, but allows larger programs to be

40

JOVIAL/Ada Microprocessor Study Final Technical Report

compiled. Since the symbol table entries for a procedure's local data are
purged at the end of the procedure, a program which is "too large" may be
shorter than another which can be compiled.

The Pascal/Z compiler generates assembly code containing both machine
instructions and macro calls. The output of the compiler is assembled with a
set of macro definitions to produce a relocatable; the relocatables are then
linked with the library to create an executable module.

The compiler itself is one pass, although it could be argued that the
assembler is, in effect, the second and third passes of the compiler. Indeed,
some of the compiler options are handled in the macro expansion. Options such
as turning range checking on or off are implemented by generating an assembler
pseudo-op indicating whether this option is being turned on or off and letting
the range check macro determine whether or not to generate code based on t~he

value of the flag.

Timings were obtained for the three benchmarks discussed above as well as for
several other programs. Due to incompatibilities in the languages processed
(particularly with regard to strings), not all programs were compiled using
both compilers. Timings were made using a stopwatch. The time required for
human interaction was excluded. (The human interaction consisted in the case
of UCSD Pascal of designating the source and object files; in the case of
Pascal/Z it was typing the command line).

Runs were made with and without listings for both compilers. When source
listings were requested they were written to the disk. The same disk drive
was used both for source and object files.

The highest speeds obtained were with the tJCSD Pascal compiler, compiling
without listings and without swapping. Speeds ranged from 275 lines/minute to
a high of just over 380 lines/minute. With listings off but swapping on,
speeds were in the neighborhood of 275 lines/minute. The worst results were
obtained with listings and swapping on. For these latter c:ompilations speeds
ranged between 70 and 100 lines/minute.

The figures were somewhat different for Pascal/Z. For compilation only and
with listings turned off, speeds were in the range of 110 to 130
lines/minute. With listings turned on, speeds declined to the 90 to 105
lines/minute range. The speeds for compiling and assembling were roughly half
of the speeds for compilation alone. Alternatively, the assembly times were
comparable to compilation times. For compiling and assembling with no
listings speeds in the range of 55 to 70 lines/minute were observed. With
source listings the range was from 50 to 65 lines/minute. When assembly
listings were produced the range was 30 to 40 lines/minute.

41

JOVIAL/Ada Microprocessor Study Final Technical Report

One of the more interesting results was the fact that obtaining a source
listing has a great deal of effect on the UCSD Pascal compiler but does not
really have much effect on Pascal/Z. One possible explanation is that the
size of the source listing file is large compared to the UCSD object file but
small in relation to the Pascal/Z assembler input file. Another is the fact
that there is a high (1 second) cost associated with starting up the disk
drive if it is shut down due to inactivity. It is, in fact, possible to
envision a case where it takes less time to do more 1/O, due to the fact that
the process of restarting the motor is so time-consuming. If the motor were
kept running due to the higher volume of I/O, less time might actually be
required.

These compilation speed figures indicate that on a hardware configuration like
that of the Northatar it is difficult to obtain sufficiently high compilation
speeds so that 373 or Ada compilers could be used for serious development
work. The speeds for the UCSD Pascal compiler with listings turned off are
well within the acceptable range. It must be remembered, though, that it
would not be Possible to fit a one phase 373 or Ada compiler in such a small
machine. Thus, there would be additional overhead due to overlaying and the
necessity of saving information on disk between overlays.

The use of interrupt-driven Direct Memory Access (DMA) for 1/O is likely to
provide a significant improvement in speed. Hard disks (Winchester or
Cartridge) could also help to raise compilation speeds significantly.

Compilation speed estimates for various hardware configurations appear in
Chapter 20. Figures for machine speeds for an instruction mix like that which
is found in compilers are given in Appendix M.

7.7 Execution Speeds

A number of execution speed tests were run in order to check the difference in
speed between compiled, threaded and interpreted code. These tests were
conducted on the Northstar Horizon described above. The compilers used were
Pascal/Z for compiled code and UCSD Pascal for interpreted code. Threaded
code was obtained through the use of a Forth system [Supersoft8O]. The test
cases were hand-compiled into a dialect of Forth, and threaded code was
obtained by compiling these definitions. It should be noted that Forth was
used strictly as a means for getting threaded code, not for the purpose of
comparing Pascal and Forth.

Several different types of tests were run: prime number generation, Ackerman's
function, and sorts. Of these tests, the sorts are probably the most similar
to the type of code found in compilers. The other tests were used to compare
various other aspects of program execution.

42

JOVIAL/Ada Microprocessor Study Final Technical Report

Two different prime number generators were run. One used the sieve of
Eratosthenes and the other used division. For the sieve, the compiled code
executed slightly less than six times faster (two times faster with range
checking), but printing the results took almost three times longer. (This is
due in part to the fact that UCQD Pascal prints integers left-justified, but
Pascal/Z inserts leading blanks.) When division was used to compute the prime
numbers, the interpreted code was nearly three times as fast as the compiled
code. These tests amounted to a test of the interpreter against the runtime
library for the compiler, and are not particularly valuable in predicting
performance.

The Ackerman's function test is a good indication of the relative costs of
subroutine calls for the two systems. In this test the compiled code was
almost three times as fast.

Several sort tests were run. Recursive and iterative versions of quicksort as
well as bubblesort were tested. The programs were obtained from [Wirth761.
Interestingly enough, the recursive quicksort ran faster than the iterative
version in both compiled and interpretive code. Bubblesort was slower, even
for small values. The interpreted code was almost exactly twice as slow for
all three versions of the sorts.

As an additional test, bubblesort and the recursive quicksort were run with
bounds checking turned off. These two sorts were also run as threaded code.
The difference in speeds between the compiled and interpreted code rose from
2:1 to 5:1. The threaded code was the slowest with a ratio of 6:1 to the
compiled code. The reason for this is that the Z80 is not well-suited to
interpreted code (there is no autoincrement addressing mode) and because the
P-machine is at a higher level than the threaded code. (This is particularly
true with respect to address calculations.)

Range checking had a drastic effect on execution speed. The compiled code
executed almost 3 times slower with checking turned on. Interpreted code ran
only about 1.2 times as slow. The fact that checking had more of an effect on
the native code is not at all surprising since the cost of checking is roughly
the same in absolute terms for both compiled and interpreted code, but since
the interpreted code is slower, checking is cheaper in relative terms.

Several of the tests were also run through the Telesoft Ada compiler on the
68000-based system described above. These tests are not a true indication of
the difference in power between the Z80 and the 68000 because the 68000 was
restricted by the Q bus, but the tests do provide a lower bound on the
performance improvement which could be expected from compute-bound jobs.
Speeds on the 68000 were from slightly less than 2 to slightly more than 4
times faster than on the Z80.

43

JOVIAL/Ada Microprocessor Study Final Technical Report

In order to obtain some baseline figures for comparison, some of the tests
were run on various models of DEC-10s. Of greatest interest for the purposes
of this study is the comparison between the DEC-10 speeds and the 68000
speeds. In several cases the speeds achieved on the 68000 were faster than
those obtained on the KAIO. The test cases were compiled using the Telesoft
Ada and Pascal compilers on the 68000, and using a compiler developed at the
University of Hamburg on the DEC-10. The quality of object code generated for
the two machines was comparable when bounds checking was turned off, so the
test cases without bounds checking are a good indication of relative machine
speeds. None of the compilers performed any extensive optimization. The
Telesoft Pascal compiler made better use of machine operations for statements
such as "I := I + 1;" than did the DEC-10 compiler. The Telesoft compiler
generated reentrant code, whereas the DEC-10 compiler allocated program-level
data statically. The quicksort test case was run with the array statically
and dynamically allocated on the DEC-10, in order to provide a better picture
of the relative machine speeds. In the case that the array was allocated
statically, the DEC-10 code for array references is simpler. When the array
was moved to an inner block, it was more complex. Code equivalent to the
Telesoft Pascal generated code would fall somewhere in between.

Range checking slowed the 68000 code significantly more than the DEC-10 code,
because checking was done in-line on the DEC-10 (with two skip instructions),
but by means of a subroutine call on the 68000.

Other benchmark results have been published in [Gilbreath8l], [Grappel8l],
[Titus81], and [Interface Age, June 1980]. One unfortunate aspect of
benchmarking microprocessors is that the results are out of date almost as
soon as they are obtained, since manufacturers are often bringing out faster
versions of the various chips.

[Grappel8l] compared four 16-bit micros: the LSI-11, the 8086, the Z8000 and
the 68000. In the tests as conducted the 68000 fared best overall, but Zilog
recently has run ads [Electronics, Sept. 7, 1981] in which the figures were
recalculated for a 10 Mhz ZBOOO. (The original tests used a 6 Mhz Z8000.)
Not surprisingly, the Z8000 was the best with the revised figures.

Gilbreath [Gilbreath8l] ran an Eratosthenes sieve algorithm through a number
of compilers on a large variety of microprocessors. Unfortuntely, his results
are not directly comparable with ours since the alogrithms differed. The
16-bit processors, in general, did much better than the 8-bit processors. Of
note also was the disparity in the results obtained with different compilers
on the same machine. Some of the differences could be explained due to the
fact that some compilers generated interpretive code, but even among the
native code compilers there was sometimes as much as a factor of 10
difference. Unfortunately, no attempt was made to explain these differences.

44

JOVIAL/Ada Microprocessor Study Final Technical Report

Titus and others [Titus8l] show the code for bubble sort, string search,
square root approximation and table lookup benchmarks for the 8086, Z8002,
LSI-ll, 9900, 68000, and NS16032. These are referred to by Motorola
[Electronics, July 28, 1981, p. 721 as the Blacksburg Group benchmarks.

[Interface Age, June 19801 describes the results of running a prime number
algorithm (division method) with Basic interpreters for various machines. A
bipolar bit-slice processor was the fastest.

45

JOVIAL/Ada Microprocessor
Study Final Technical

Report

8. ADA LANGUAGE ISSUES

The Ada language has been examined for areas which could cause implementation
difficulties or which require special attention. The following discussion
attempts to delineate some of these areas.

8.1 Dat-~ Space Management

The Ada language requires an underlying mechanism to perform data space
management. This space management is separated into two distinct functions
although at some level they may conflict in their request for space.

The first function is used to provide the local storage for subprograms and
blocks. The algorithms are quite simple; space is acquired upon entrance to
the subprogram (block) and released upon exit or termination. Since this
space acquisition/release is well-behaved, any of the usual stacking
mechanisms accommodate this type of space management and are quite efficient.
There is little compiler or run-time library impact associated with this space
management except in connection with parallel paths (addressed below).
However, a display is required for accessing recursive outer scope data and a
mechanism for dealing with a stack overflow must be present. Neither imposes
significant overhead upon a subprogram (block) entrance or exit.

The second form of space management is much more complex. This space is used
in connection with access variables and is acquired from what is commonly
known as a "heap". Although an explicit release feature exists in the
language, the default semantics are that this space may be released only when
there is no access variable which can reference the space. A mechanism must
be provided then to free unattached space and/or compact the storage to
consolidate discontiguous holes to satisfy requests for larger chunks.
Significant overhead is usually associated with the management of this space.
This overhead may be handled differently depending upon the constraints and
characteristics of the target embedded computer system. Some alternatives and
related comments are presented below:

1. Access variables may be linked together with like typed variables to
permit delinking and release of unattached data at reassignment.
This requires a significant data space overhead for large lists.

2. Counts of access variable copies may be kept with the space to
determine unreferenced space. A limited count field minimizes the
data overhead and accommodates most lists but not multiply threaded
lists. A maximum value inhibits further incrementation and, of
course, decrementation.

3. Garbage collection may be performed at space exhaustion to trace all

46

JOVIAL/Ada Microprocessor Study Final Technical Report

access variables, mark all referenced space and free released space
and/or compact referenced space. A severe response time penalty
occurs at apace exhaustion that is probably unacceptable in any real
time system.

4. Incremental tracking and marking may be done to permit continual free
space release. Current studies limit the overhead for incremental
collection to twice that of collection at exhaustion. The tradeoff
between total CPU usage for the former and the delay associated with
the latter must be evaluated for the application.

5. Explicit releases may be generated at exit from a scope containing
the access type declaration.

6. A transaction file may be maintained which permits incremental
updating of reference counts for determining attachment. A compiler
may optimize out many of the transactions by flow analysis but the
overhead of the file operations are still significant.

All of these algorithms involve varying degrees of data space and code
execution overhead that may not be ignored. Most of these algorithms have
been developed to support well defined data structures controlled totally by
an underlying language mechanism. Imposing a mechanism such as this on real
time computer systems with program overlays, a high percentage of space
allocated to list structure, and list structures that may be moved partially
or entirely to secondary store at the application discretion (such as with a
store and forward message switching system) dictates that some facility must
be supplied to minimize space release and automatic reclamation by garbage
collection. Although the potential use of dangling pointers is undesirable,
system constraints may require such treatment of this space.

A complication derives from space management with concurrent processing paths
(Ada tasks). In addition to the requirement for multiple stacks (or
acquisition of stack space from the heap), certain mutual exclusion areas are
necessary within the space management routines. Note, however, that these may
already be present for an incremental collection scheme. If stack space and
heap space are acquired from the same space pool, the stack space need not
enter into the garbage collection process and should be distinguished as
requiring a release. This release may be prompted invisibly when exiting the
closed scope which had requested it by inserting a return to a space interface
routine between the caller and callee requesting the space extension.

If heap apace compaction is required, all tasks using the heap Must be
suspended to pack the used space and adjust any access variables, including
those contained in registers. This further places a burden upon optimization
and the space management mechanism.

47

JOVIAL/Ada Microprocessor Study Final Technical Report

8.2 Input-Output for Ada Programs

Since input and output in Ada will be done by calling procedures defined in
packages, the compiler will not need special knowledge about input or output.
It will be possible to generate code as if INPUT_-OUTPUT and TEXT_10 were any
other kind of package. Some issues related to the implementation of these
packages need to be resolved, including the method of implementation of
objects. The intention of SETNEXT, acccording to the Ada Rationale, is to
allow random access for those objects to which it is applicable. CREATE,
however, does not specifically provide an indication of whether the object
created should have sequential, indexed sequential, or random organization.
The file organizations for devices such as disks must be decided upon.
Sequential access is sufficient for a number of applications. Paired SET_-NEXT
and READ or WRITE calls give a form of random access. If the calls are not
paired, but multiple READs and WRITEs follow a SET -NEXT, the behavior is more
like indexed sequential. Also, successive reads may result in discontiguous
records being read, if there are undefined records in the file. Thus, a case
can be made for supporting all three organizations.

The language does not specify how the user should indicate the desired file
organization, or whether this should be permitted. A number of possibilities
exist. Files may be organized in a manner which permits facilitates the types
of accesses described above. One example of such a structure is the B-tree
[Knuth73, Comer79]. Another possibility is to allow the user to specify file
organization, either in the command language or in the file name parameter to
CREATE.

8.3 Text 1/0 for Ada Proixrams

Input and output for the files will also be done by calling TEXT_10. Since
the text input and output procedures will be able to use the procedures in the
package INPUT--OUTPUT, the issues which apply to INPUTOUTPUT tend to apply to
text input and output.

Enumeration types have a generic package because the REP attribute is
different for different enumeration types. It would probably be possible to
have only one copy of the code for the enumeration type text input and output
routines, with a different table for the REP attribute for each
instantiation. Whether such an optimization is worth the effort is a design
decision.

48

JOVIAL/Ada Microprocessor Study Final Technical Report

8.4 Tasking

Since the rendezvous as a parallel processing language concept has only
recently become popular (although its roots go back to the 1960's), there are
a number of issues related to tasking which will need to be resolved during
the design phase. Most of these issues concern the implementation of tasking
on the target and only affect the output of the compiler and not compiler
structure.

The implementation of the select statement has several possible strategies,
especially when the guards have no side effects. The brute force method
evaluates each guard each time the select is executed. Other strategies (some
are given in the Ada Rationale) allow a more efficient implementation.

The select statement is likely to be one of the more interesting language
featureE to implement. There are several reasons for this. First, there are
three varieties of select, each with different syntax and semantics. Second,
the order of evaluation is quite different from the order in which the
components of the select appear in the source. Third, in some cases the rules
for the selection of alternatives require that all open alternatives be
examined. This requires a certain amount of intelligence on the part of the
implementation.

Two other areas which are bound to create interesting implementation issues
are the presence of tasks in recursive procedures and the means of passing
parameters to accept statements.

The design for tasking facilities that is sketched in the Rationale is more or
less a proof of existence and is not intended to represent the moat efficient
implementation. Thus, the design effort will have to concern itself with how
to implement tasking efficiently. One aspect of this is how to interface with
the host operating system. Should the host's tasking facilities be used by
the framework or should the framework have a tasking machanism which is
completely independent? A possible problem area is the necessity for
operations involving the updating of the queues to be uninterruptable. For an
APSE running under a host operating system, the definition of uninterruptable
can be stretched to mean not interrupted by another task in the APSE system.
Nonetheless, caution must be used to insure that there is no chance that queue
updating operations are incomplete when a dependent attempt is made to access
the queue.

Special consideration must be given to exceptions raised in the presence of
multiple tasks. FAILURE is treated as a special kind of exception. It is the
only exception which may be raised in one task by another. It is not
propagated to the calling task by a caller which receives a FAILURE raised by
a third task. Rather, a TASKINGERROR is propagated.

49

JOVIAL/Ada Microprocessor Study Final Technical Report

An exception raised in an accept statement but not handled there is propagated
in both the calling and called tasks. Also, if the called task is terminated
before the rendezvous is completed, the exception TASKING_-ERROR is raised in
the calling task. The system must be able to handle these situations.

Since tasking is a feature which is likely not to appear in a large number of
programs, pains should be taken to insure that the cost of tasking is as small
as possible for those programs which do not use it. This applies both at
compile time and execution time.

Because subsets of Ada are not to be considered, it is necessary to design a
compiler which can handle the tasking constructs such as selects, accepts and
entries. However, it would be vise to handle such constructs in an optional
phase or phases so that the cost of tasking is negligible for compilations of
programs in which these constructs do not appear.

8.5 Exception Handling

The exception facility is a feature of Ada which has an impact on both the
compiler and the linker. Exceptions are only supposed to add to execution
time in the event that they are raised. The Rationale sketches a method for
achieving this goal.

Since an exception may be propagated beyond the scope in which its name is
known, unique codes must be assigned to exceptions across an entire link. For
this reason the compiler must communicate information about exceptions and
their handlers to the linker. This, of course, implies that there must be a
special Ada-oriented linker, since existing linkers do not support such
features.

8.6 Generics

Generic program units are only templates and, therefore., differ from ordinary
program units. Several interesting issues arise from the generic feature.

Since the rules for generics require that resolution take place at the point
of generic declaration, rather than instantiation, it is necessary to retain
an IL representation of the program for any generics that are visible from
other compilation units or subunits.

Also, since there are expressions in the generic part which must be evaluated
in the context of the declaration elaboration, but which are used by the
instantiation, the compiler must provide a means by which the instantiation
can use the appropriate values. This can be done by creating additional

50

JOVIAL/Ada Microprocessor Study Final Technical Report

constant or renaming declarations at the point of declaration, and referencing
the appropriate objects in the IL for the instantiation.

Generics and resolution present an ordering problem for a multi-pass
compiler. It is necessary for resolution to be performed on the generic's
body at the point of declaration. This means that resolution must precede
instantiation, unless the context of the declaration is to be reconstructed
for a special form of resolution after the generic is instantiated. (This
would be a funny form of "macro" expansion and would be quite inefficient).
However, the instantiation of a package can create subprogram, type, and
object definitions which may be referenced by program units which follow the
instantiation. This implies that instantiation must precede resolution.

Note that this is not a problem in a single pass compiler, since the generic
body is encountered before the instantiation, which, in turn, precedes uses of
entities by instantiation. Thus, resolution is performed on the body of the
generic before it is instantiated; the generic is instantiated before its
declarations are referenced outside its own Ladi and resolution takes place
using the instantiated definitions. It is tempting tk perform resolution and
generic instantiation in separate phases, but this leads to the ordering
problem described above. Resolution and instantiationi must be performed in
the same phase to handle the general case. (The problem does not exhibit
itself if the generic body, the instantiation and the use of instantiated
entities each occur in separate library units.)

At both compile time and link time there are opportunities for optimization
that result from generics. At compile time it might be desirable to combine
generic instantiation for different types if the generated code happened to be
the same. An example of a case where this could happen would be for a generic
package for stacks. Assuming a reasonable implementation of the package, any
types whose representations happen to be the same size could share the same
code.

Not all of the optimizations related to the generic feature can he handled at
compile time. Suppose two different packages instantiate the same generic
unit with the same generic parameters. At compile time there is insufficient
information to tell that a duplication has taken place. The linker, however,
could be provided with sufficient information so that it could eliminate
redundant instantiations.

8.7 Overloading

Several factors must be considered with regard to overloading. First, the
analysis of expressions can be considerably more complicated as compared to
typical ALGOL-like languages. It is no longer possible to determine what

51

JOVIAL/kda Microprocessor Study Final Technical Report

operation is intended by examining just the operator and its operands.
Contextual information must be passed up and down the expression tree until
the types of all of the operators and operands can be disambiguated. One
possible design strategy would be to attempt to handle expressions in the
traditional way, except when overloaded operators were actually present in the
expression. This would help avoid having to pay the cost of overloaded
operator processing in the vast majority of cases.

Second, the handling of names is somewhat different. In traditional block
structured languages, a duplicate name in an inner scope hides an object with
the same name in an outer scope and the occurrence of the same name for
different objects in the same scope is an error (with rare exceptions). With
overloading, however, a procedure or function only hides the name of an outer
scope procedure or function if the types of their parameters are the same. No
longer is it possible to search just for the innermost occurrence of a name.
In some cases all scopes must be searched to make sure that all visible
overloaded functions are considered when types are being resolved.

8.8 Linkinit and Loading

Ada imposes requirements not only upon the compiler but also upon the linker.
This is in contrast with J73 which has been implemented to generate
relocatables that are processed by existing linkers. An important issue to be
determined during the design are the features to be supported by the linker.
Automatic library searches for external symbols, program overlays,
user-oriented listings and convenient linker commands are obvious
requirements.

User convenience must be a major objective of the linker design, particularly
in the manner in which the linker supports configuration management. Ada
dictates an order of compilation in system development which guarantees
interface version integrity but could burden program development and
maintenance. Minimizing this overhead will be an objective of the linker
design. Default version selection will assist the user during creation of
ever-evolving builds.

A feature often lacking in system linkers which greatly facilitates large
system development and maintenance is a capability to perform partial links as
required by the Ada language definition. To accomplish this, the linker must
produce as well as accept relocatable objects. To eliminate the requirement
for the linker to produce two object formats, one for subsequent linking and a
different one for loading, a single one may be defined that satisfies both
functions. A loadable object could simply be a relocatable object containing
no unresolved symbols (or at least none that the loader could not satisfy).
To minimize loading overhead, the linker could produce load address biasing

52

JOVIA.L/Ads Microprocessor Study Final Technical Report

which would allow the loader to ignore object relocation information.

Another important function that should be supported by the linker and loader
is the acceptance of symbolic debugging information in object modules and the
association of this information with executing programs. This information
should always be available for use by a debugger but should not occupy memory
space except when in the debugging mode.

With the definition of a retargetable linker comes the desirability of
defining a common, machine-independent object module format. Having a
standard relocatable format permits the inclusion in the design of a standard
relocatable object module formatter in the compiler and elimination of a
previously non-trivial task required for retargeting efforts.

8.9 optimization

There are issues in code optimization which are more or less traditional,
those which are peculiar to Ada, and those which are peculiar to, or
particularly important for, microprocessors. The latter two categories are
emphasized here.

Possibilities for optimization to reduce a program's resource requirements
exist when an object action can be expressed in any of several different
ways. The increased generality of object actions in Ada and the increased
security of Ada programming introduced by strong typing offer many
opportunities for optimization.

Ada also provides sources of optimization information, again in the form of
strong typing. Variables may be declared with sub-types constraining the
range of values they may assume. This permits the selection of instruction
sequences highly tailored to the operand. Additional aids to optimization are
the optimize pragma, the prohibition against aliasing, and the treatment of
exceptions.

Language independent optimizations are expressible as source or intermediate
language transformations and are valid for most target machines and
architectures. Examples are common subexpresuion elimination, loop
optimizations, such as unrolling and fusion, dead code and variable
elimination, constant folding, inline substitution and code motion.

Machine independent optimizations are valid for most architectures, but
concern the use of resources on a target machine, including such factors as
minimizing the number of accesses to memory and making use of multiple or
parallel computational facilities. Examples are register allocation, variable
overlaying, order of expression evaluation, Boolean expression and other

53

JOVIAkL/Ada Microprocessor Study Final Technical Report

peephole optimizations, structure alignment, subscript linearization and
strength reduction.

Machine dependent optimization makes the best use of individual machine
instructions. Examples are the use of increment instructions, shift
instructions, and addressing modes. Machine dependent optimizations are
normally performed during code generation or in a peephole optimizer which
executes after code generation.

The selection and specification of the optimizations and the messages
generated during optimization must be considered. A major benefit of
optimization may come from the diagnostics produced by an optimizer. For
example, if a large section of code is unreachable, the source programmer
should be advised exactly which lines of his program were deleted. However,
the programmer should not be inundated with messages advising him of the
deletion of code generated by the compiler, for which he has no direct
responsibility.

Since some optimizations have little benefit relative to their cost at
compile-time, it should be possible for the user to select optimizations and
perhaps to specify those parts of the program which are to be optimized.
These options should be expressible in pragmas embedded in the program and in
the JCL which invokes the compiler. In the event of a conflict between the
JCL and the pragmas, the JCL should take precedence because of its later
binding time.

It is crucial that a cost/benefit analysis be done before deciding what
optimizations to include. The optimizer will be squeezed three ways. It must
be fast, small and generate good code. Unfortunately, these are conflicting
goals. It is better to do a good job on the coon cases and to save the
space and time involved in checking for, and performing some of the rarer
opt imizat ions.

A number of studies [Knuth7l, Elshoff76, Tanenbaum78l (including this one)
have shown that expressions tend to be relatively short. Thus, it makes more
sense to optimize the common cases like 1-J, I-0, and 1-1+1, rather than to
attempt to generate optimal code for complicated expressions. Tailoring the
sorts of optimizations the compiler performs to suit the applications for
which the compiler is intended should help. One of the purposes of gathering
statistics on the J73 compilers was to determine what operations need to be
optimized to generate good code for the compiler itself. A similar sort of
thing could be done for applications programs or even a specific class of
application programs.

Other areas to be considered in optimizer design include performing constant
arithmetic in host- and target-independent fashion, provision for internal

54

--

JOVIAL/Ada Microprocessor Study Final Technical Report

optimizer tracing and dumping of data in user readable format to permit
effective optimizer debugging, and creation of test cases.

The frequent occurrence of sub-type value and index-range- checking in Ada
programs imply that extensions of constant folding and propagation of range
information, should be attempted. On a microprocessor the optimization of
subscript and range checking is even more important than it would be on a

large machine. There is great potential for optimization, particularly with
regard to the subscript range checking, since the same subscript is often used
to access different fields within the same record. These optimizations have
the fortunate property that they save both space and time.

Recognizing the scope of an IF statement, if the IF-expression is true, leads

to additional comon subexpressions. The optimization of sub-type and

index-range checking is somewhat different from ordinary optimization of

conditionals since a failure of one of these checks generates an exception,

which implies that if the condition is true, the scope containing the

condition is exited. Thus, it is only necessary to make such a check once if
the first check back dominates the others. This is not true for ordinary
conditionals.

Consider the following example:
rangecheck(arraybounds,I)
statements;
rangecheck(arraybounds,I);

statements-2; .

This may be optimized to:

rangecheck(arraybounds,I);
statements;
statements-2;

since it is known that if "statements" is executed that no range error can

occur at the second rangecheck.

On the other hand;

IF cond(I) THEN statement-a
statements-1
IF cond(1) THEN statement-b
statements-2

cannot be optimized in the same way. The cond(I)'s may be found common but

the second IF may not be deleted, since statements-l will be executed

regardless of whether the condition is true or false. (This assumes, of

55

JOVIAL/Ada Microprocessor Study Final Technical Report

course, that statement-& is not ,goto).

Unfortunately, optimization is most needed, but also most difficult for small
machines. Optimization is needed because programs must be compact in order to
fit in the machine. In addition, since the hardware is not as fast,
inefficiencies in the generated code will be more apparent in reduced
performance.

A prime example of an optimization which is more important on a microprocessor
than on a large machine is strength reduction. On a machine with a hardware
multiply, the effect of changing a multiplication to an addition is to save a
few microseconds per execution of a loop at the cost of several words for the
initialization. If the machine has no multiply, the savings can be
significant in terms of speed since a single macbine instruction is being
substituted for a subroutine call. There is even the possibility, if all of
the multiplication in a program can be removed, that the library routine which
performs multiplication can be omitted, yielding a savings in terms of space.

Optimization is more difficult on a small machine due to time and space
constraints. Global optimization traditionally requires large amounts of both
time and space if a good job is to be done. The more information an optimizer
has, the better job of optimization it can do. This information includes such
things as set/use data and control flow information. Room is required to
maintain the data structure which contains this information. If it is kept in
main memory, a larger region is required. If it is kept on disk, a time
penalty is incurred. It is, of course, possible to make optimization
optional, but if the optimizer is excruciatingly slow, it will not be used for
normal compilations. If this is the case, it is unlikely that the optimizer
would become stable within a reasonable amount of time, causing users to shy
away to avoid potential optimizer bugs.

While numerous papers have been written regarding the optimization of
generated code, little attention has been given to the problem of developing
effective algorithms which do not require much space.

Also, optimization has traditionally atteinted to maximize speed of execution,
sometimes at the expense of space. Some optimizations, such as the compile
time evaluation of constant expressions, provide both time and space
improvements. Optimizations such as loop unrolling sacrifice space for the
sake of speed.

If a microprocessor is the target machine, regardless of the host, the
emphasis for most applications should be on reducing the apace requirements of
the object program. There is a pragma in Ada to indicate whether optimization
is to emphasize space or time improvement. However, the compiler must have
space optimizations built in if the use of the pragma, is to do any good.

56

JOVIAL/Ada Microprocessor Study Final Technical Report

One of the common characteristics of the newer microprocessors is the
availability of various methods of addressing data. Substantial savings are
possible if a short form of addressing can be used for the most comnly
referenced data. Often a short address can allow one word rather than two to
be used for a memory reference.

In order to take full advantage of such features, it may be necessary to
allocate data so that the more frequently referenced data may be accessed
using a short form of address. This requires that a count of references to
each data item be maintained and that operands not be bound to storage
locations until the count has been tallied.

A number of machines have a feature which is sometimes called "register
indirect" addressing. This is a degenerate form of indexed addressing where
the register contains the address of the location referenced. The effect is
the same as indexing with an offset of 0, but since the 0 is assumed, no space
is required for it.

This feature can be used to greater advantage if names are found common. The
method for doing this would be similar in some ways, but not identical to,
finding values common. The principal difference lies in the spoiling rules.

Another machine feature which is found more often on microprocessors than on
larger machines and which affects optimization is memory-mapped I/0. This
machine feature, however, does not present opportunities for optimization.
Rather, it requires that the optimizer use extra care if it performs certain
optimizations. Common subexpression elimination and dead store suppression
must not be performed if the operands which are being optimized are in the
address space reserved for I/0. Ptrforming those optimizations on operands in
that address apace would cause the I/0 characteristics of the program to be
altered.

8.10 Recompilation

One of the significant differences between Ada and other languages is the
explicit requirement for compilation order checking by the compiler [Ada
10.3]. While there is an implicit requirement that the caller and callee
agree on a calling sequence in other languages (e.g., FORTRAN), there is no
requirement that the compiler check this. Indeed, the only source of such a
requirement is that the linked program will not work (in general). The burden
of making certain that the caller and callee are in agreement falls on the
user.

In J73 a user may achieve a certain degree of checking by including the
compool containing a procedure s specifications in the compilation which

57

JOVIAL/Ada Microprocessor Study Final Technical Report

includes that procedure s definition. If there is a discrepancy, the compiler
will issue a diagnostic. There is, however, no requirement that the linker4
check for consistency of compool usage between modules. Moreover, it is
possible to reference an external procedure with a DEF, bypassing the compool.
mechanism entirely.

It is the intent of Ada to relieve the progr-nmmer of the responsibility for
consistency checking by moving the responsibility to the tools. It is
necessary for the tools to inform the user of inconsistencies in compilation
order both at compile time and at link time.

We feel that automatic recompilation is too inflexible and potentially
wasteful of system resources. A compilation order problem discovered by the
linker or the compiler may, in fact, signify something more than a mere
failure to recompile units which depend on other newly compiled units - it may
mean that a change has been only partially implemented.

In order to provide greater flexibility, but still avoid placing too much of a
burden on the programmer, the detection of compilation order errors is loosely
coupled with recompilation. The user is given a list of modules which need to
be recompiled in the correct order for recompilation. This list may be used
to drive the recompilations; however, no recompilations are performed
automatically by the system. (A command procedure for doing this could be
written, though.)

58

JOVIAL/Ada Microprocessor Study Final Technical Report

9. MINIMUM CAPABILITIES OF A MICROCOMPUTER DEVELOPMENT SYSTEM.

In order to determine whether a microprocessor is suitable for hosting a
software development system, it is necessary to define tbe requirements for
such a system and to evaluate microcomputer hardware to see if those
requirements are attainable.

* The capabilities offered by a micro-based development system vill very likely
have limitations when compared to the large time sharing development systems
currently in use. If the liiain moe ya micro based sytmwere too
severe the system would not be useable; for this reason it is important to
establish some minimally acceptable operational characteristics for a
commercially useful micro based development system.

It should be noted that the functional capabilities of some of the current
16-bit micros meet or even exceed the capabilities (per user) of some of the
present large time sharing systems.

The micros do not have the raw computing speed of the larger systems nor, more
importantly, do they have the operational systems software. Also, their I/O
capabilities are not as great. This is likely to be the bottleneck which
limits user capacity.

The major areas of concern for a program development system are the following:

System Disk Storage Requirements

System Memory Requirements

Compilation Speed - Lines/Minute

Source Program Size Limitations

Available User Disk Storage

Printer Speed

Other Peripheral Support

Multi-User Capabilities

System Facilities

59

JOVIAL/Ada Microprocessor Study Final Technical Report

9.1 System Disk Storage Requirements

The total amount of disk storage required to hold the executable modules of
the system itself is very important in the overall configuration of a micro
based development system.

Under "system modules" the following general functions are included (with

expected storage requirements in bytes):

Function Disk Storage

Resident System 50K
Compiler 1000-1500K
Editor(s) 50K
Linker 20K
Debugger 30K
File Utilities 50K

With these estimates, a minimum system will take approximately l.5M-2M bytes
of disk storage. This is about the capacity of 3 to 4 single-sided dual
density 8" floppies, and less than the capacity of a single cartridge or
Winchester drive.

The compiler estimate above is for an optimizing compiler for the full
language. In comparison, the TeleSoft Ada compiler requires only about 300K
bytes.

Note that these figures do not include disk storage for the application.
While the amount of storage required will depend on the size of the
application being developed, it would be wise to allow for another megabyte of
on-line storage.

This would bring the disk capacity up to 2.5-3M. We currently feel that the
8" floppy disk will be the standard disk device for the transfer of data and
programs between micro systems. However, while it would be possible to have a
(bare) minimum system with only floppies, the increased performance and
capacity of hard disks would seem to dictate the use of a hard disk as the
primary disk.

9.2 User Disk Capacity and Printer Speed

Both user disk capacity and printer speed are more an option of the user than
they are a system specification. Some important objectives are that the
system not arbitrarily limit the number and type of disks which can be
supported, and that the system support reasonably high speed printers.

60

JOVIAL/Ada Microprocessor Study Final Technical Report

Thus, while disk and printer characteristics are of critical importance to the
user in configuring a micro system, both from the point of view of cost and of
system capabilities, this area should have relatively minor impact on the
design and development of major portions of the system itself.

The various types of disks which should be supported are:

Type Size -Typical Capacity

Floppy 5 1/4" and 8" Up to 3MB

Winchester 5", 8", and 14" Up to 160MB
(fixed)

Cartridge Single/Dual Platter up to 32MB
(removeable)

9.3 Comilation Speed

Compilation speed is an important factor in program development.

A development system would he impractical if compilation speeds were too slow;
even where compilation speeds are barely "acceptable", a slow compiler makes
program development more difficult.

Current 373/1 compilers running on the IBM _-1, Univac 1108 and DEC-10 have
compilation speeds ranging up to 6-7 thousand statements per CPU minute. From
the user point of view the apparent compilation speed in elapsed real time
varies from several hundred to several thousand statements per minute,
depending on system load. (See Appendix C.)

A minimally acceptable compilation speed on a micro based system is two
hundred statements per minute of elapsed time. This figure was arrived at by
taking 5 minutes as a acceptable delay for compiling a 1000 line module.

This is of course a somewhat subjective figure. However, current PASCAL
compilers on 8-bit micros meet this compilation speed and we feel confident
that even though Ada is a much bigger language, that this compilation speed
can be met or even exceeded depending on the micro configuration.

9.4 Other-Peripheral Support

A variety of different peripherals can be attached to current micro-based
systems. A micro-based program development system should support such

61

JOVIAL/Ada Microprocessor Study Final Technical Report

peripherals or allow for the extension of the basic system to support such
peripherals.

Possible peripheral devices would include the following:

Terminals
CRT's or hard copy (300 and 1200 baud modems)

Printers
Line oriented devices

Floppy disks
Winchester disks
Cartridge disks
Magnetic tapes

Standard 3/4" tapes
Paper tapes
Cassette tapes
Other Computers (via dial-up telephone link)

A minimal micro development system might support the following:

1 Terminal CRT Screen
1 Printer
5 or 6 8" floppy disks

A more practical minimum system would include a hard disk. It is expected,
though, that data transfer between Micro systems will normally be done via
floppy disks.

9.5 Source Program Size Limitations.

A micro based compiler will probably have some source program limitations
which are more restrictive than those of a compiler running on a large time
sharing system.

Some estimated minimal limits, derived from a production-quality J73 compiler,
are given below.

62

JOVIAL/Ada Microprocessor Study Final Technical Report

LIMITS, CAPACITIES, RESTRICTIONS

* The maximum number of levels of nesting of PROCEDUREs, FUNCTIONs, Ia,
LOOPs, CASEs, and BLOCKs is approximately 50.

* The maximum number of symbols within a language construct terminated by a

semicolon is 30.

* The maximum number of procedures per program unit is 100.

* The maximum number of levels of nesting of INCLUDE pragmas is 10. There is

no limit on the total number of INCLUDEd files.

* The maximum number of unique names allowed in a program unit is

approximately 2000.

* The maximum number of diagnostic messages, of severity warning or greater,

allowed for a compilation is 200.

* The maximum number of dimensions allowed for an array is 7.

* The maximum number of characters in an identifier is 31. If an existing
linker is used (this is possible only for J73), a further restriction may
be imposed on external names.

* The maximum number of parameters in a procedure call is 20.

* The maximum number of data declarations is 1500.

It is an important compiler design consideration that any size restriction
which canot be extended with extra memory be as liberal a restriction as
possible. For example, it would be wrong to limit the number of unique names
to 1023 independent of the amount of memory available.

9.6 System Facilities

The functions supplied by the operating system and its basic support programs
are of critical importance to the user in any program development system.

The following minimum set of functions would be needed.

Editor
Line Oriented (Optional)
Screen Oriented

63

................

JOVIAL/Ada Microprocessor Study Final Technical Report

Compiler Ada/J73

Linker /Loader

Run Time Execution/Debugger Package

File Utilities (Data Base Manager)

Document Formatter

Operating System Functions

Command Language Interpretation

Basic I/O

Terminal Interface

Tasking

Except ion Handling

A more elaborate system could allow such features as spooling, background jobs or
multiple users.

To a large extent, the characteristics of the host machine and operating system
will dictate the design of such tools as the compiler. The size of the memory
available to an individual user is, perhaps, the most significanit single influence
on compiler structure. To a certain extent additional, partitioning, beyond that
which would be present on a large system, is desirable. However, too small a
memory may dictate that phases be split artificially, rather than logically.
Although it would be possible to have a microprocessor system with hundreds of
thousands of bytes per user, such a machine would not be practical at the present
time. If the cost of hardware should decrease sufficiently with respect to
software costs, such a system would become practical.

64

JOVIAL/Ada Microprocessor Study Final Technical Report

10. SYSTEM OVERVIEW

We have already discussed a number of requirements for a development system
for small and medium-scale projects, as well as the advantages and
disadvantages of hosting such a system on a microcomputer. In this chapter we
examine how the advantages of microcomputers can be maximized and their
disadvantages minimized; ye compare the requirements for microcomputer
development systems to some current designs; and we give an overview of the
design for a Microprocessor Development System (MDS).

10.1 Environmental Differences

A number of advantages and disadvantages of microprocessor development systems
have already been discussed. We now address the effect of these differences
on the development environment. Batch environments will be ignored; the
comparison will be that of an interactive environment on a large computer
versus an interactive environment on a microprocessor.

Two of the more important differences are with respect to communications
between the user and the machine. On a large system there may or may not be
access to the machine by means of high-speed video display terminals (VDTs).
If dial-up lines are used, communication speeds will be lower. This prevents
the use of display-oriented editors and provides a strong disincentive to
"browsing" through source files, both of which are possible on high-speed
terminals.

A large computer systonn is almost certain to have a high speed printer, but a
microcomputer is less likely to have one. The effect of this is to encourage
obtaining listings on larger systems, but to encourage perusal of source files
on a microcomputer system. (On a large system which has both high-speed VDTs
and a high-speed printer, either development style is applicable. The same
would be true on a microcomputer system which had a high-speed connection to a
host which had a high-speed printer.)

The tools available on a development system which lacks a high-speed printer
should make it possible for development work to proceed in the absence of
up-to-date hardcopy listing. There are a number of facilities which the
system can provide to make this more convenient. Perhaps the most important
feature in this regard is a screen-oriented editor. This tool allows the user
to examine code in context to insure that the source is as it is supposed to
be, and to find programming errors. An extremely useful facility that the
editor can provide is a means for relating compiler diagnostics to the source
code. This could be done by having the editor display the diagnostic$ which
were associated with the lines which appear on the VDT. In addition, the

65

JOVIAL/Ada Microprocessor Study Final Technical Report

compiler can produce information which allows the editor to find the next line
containing errors. This is a generalization of a UCSD Pascal system feature
which allows a user to invoke the editor from the compiler. The compiler
provides the editor with sufficient information so that the cursor is
poritioned to the point at which the errors were detected.

Since the user is not as likely to have a current cross reference listing
available as on a system with a fast printer, it makes sense to provide a
cross reference tool which allows the user to ask questions about the uses of
a given object. One option would be to produce an entire cross reference
listing. Other options could list the references to a given variable.

Because it is to be expected that obtaining listings will be the exception,
rather than the rule, it makes sense to provide separate listing tools
(prettyprinter, cross reference generator, etc.) rather than including such
facilities in the compiler. Although the cost for doing a compilation and
obtaining a listing will be greater in terms of machine resources than if the
listing facilities were integrated into the compiler, the cost of a
compilation without listings will be less, since the compiler will be
smaller. This is particularly important in the case of Ada, since the Ada
compiler is, by far, the largest tool in the MDS system. (This is in contrast
to Pascal or Basic compilers which fit comfortably on systems of 64K bytes or
smaller.)

There are two approaches which could be taken with regard to the listing
tools. One is to construct the listings from the source; the other is to work
with an intermediate level representation of the program. The disadvantage of
the former is that the source must be retokenized and reparsed. The
disadvantage of the latter is that an intermediate representation of the
program must be maintained. This would require extra disk storage for a given
project.

10.2 Distributed Computinit

One of the more important differences between microcomputers and mainframes is
that it becomes economically feasible to have a single user per CPU. Two
alternatives to the traditional timesharing approach are having multiple CPUs
share a common memory and having a network of CPUs with separate memories.
(Note that both of these schemes have been used for large machines, but not on
a single-user per machine basis.) The advantages of having only one user per
CPU is that the operating system is simplified, and that CPU response is
independent of the number of users of the network. Ada tasking is not well
suited to multiprogramming since Ada task specifications must be compiled
before their caller. In the case of an operating system, the "tasks" are
programs whose specifications may not even exist when the operating system is

66

JOVIAL/Ada Microprocessor Study Final Technical Report

compiled. Having only one user on a CPU means that the only scheduling
problems are those associated with Ada tasking. There must be, however, a
facility for communicating with a global data base. Such a system would
resemble that proposed by Intermetrics for the AIE, the differences being that
rather than having a virtual machine for each user and one for the database,
there would be an actual machine, instead. In addition, it would be possible
to give each user a local backing store in such a distributed setup.

10.3 Relation to Ada Integrated Environment (AIE)

At the time that the Microprocessor Development System was being designed, the
three designs for the Ada Integrated Environment (AIE) [CSC81, Intermetrics8l,
TI81] had been submitted, but the winner had not been chosen. We anticipate
that the winning implementation, although based primarily on the winning
design, will, nonetheless, be influenced by some of the features of the other
two designs.

The Ada Language System (ALS) [Wolfe8l] is an Army effort parallel to the Air
Force's AIE. Although the implementation contract has already been awarded,
the design documents for the ALS did not become available soon enough for the
ALS design to have much influence on the design presented here.

Assuming that there is an implementation of an Ada environment for a
microprocessor based system, it would be to the Government s advantage to
insure that there is as much commonality as is practical between the three
systems. It would be desirable for the facilities provided on the
microprocessor system to be a proper subset of those provided by the AIE and
ALS. This would allow programmers to move back and forth more easily between
the two systems.

Because the final AIE design has not been formulated, we have not attempted to
make the microprocessor system a subset of any of the AIE designs. Rather, we
have borrowed from all three. Admittedly, the influence of the CSC/SEA AIE
[CSC8l] is the strongest, since the authors of this report also participated
in that design. The Intermetrics/MCA design [Intermetrics8l] and the Jovial
Users Group (JUG) AIE evaluations IJUG8l] were also influential.

Both Stoneman and the AIE statement of work were used as guidelines, rather
than as absolute requirements.

The operating system for the Microprocessor Development System must provide
all of the basic services which an operating system provides. These include
the ability to load and execute programs, job scheduling, and primitives for
performing input/output. Other functions which are necessary for'program
development are supplied by such tools as the editor, compiler and linker.

67

JOVIAL/Ada Microprocessor Study Final Technical Report

Because the MDS may be physically isolated, security can be derived to a
greater extent from the physical surroundings than would be possible for a
large timesharing system. Since malevolent users could be prevented from
accessing the system by excluding them from the area in which the system and
terminals are kept, it is feasible for the MDS to largely ignore the problems
of pathological users. Of course, it is still necessary for the system to
provide some safeguards against user errors, by providing file backup
facilities, read-only flags and the like. The approach taken in the design of
the MDS was to protect users against inadvertent damage to data, but to ignore
the problems presented by hostile users.

There are several other important differences between the AIEs and the MDS
environment. One is that the AIEs are systems on top of systems. There is,
in each case, an underlying operating system, although the way in which the
AIE interacts with the host system differs from design to design. For
example, in both the TI and Intermetrics/MCA designs, each user is given a
separate virtual machine but ir .he CSC/SEA design, one virtual machine serves
a number of users.

Another closely related difference between the AIEs and the MDS is that the
AIE designs assume that a given host will serve non-AIE users as well as AIE
users. We do not make this assumption in the MDS design. At least there is
no provision for MDS and non-MDS users to use the same machine concurrently.

Thus, the MDS is the actual operating system as well as a virtual system. The
user interface is the same, regardless of the host, so there is a uniform
virtual interface, but there is no operating system below the MDS itself.

10.4 MDS Components

The MDS consists of the following major components: the operating system, the
database and associated utilities and the tools. The set of tools is, of
course, open-ended, so each instantiation of the MDS can be expected to have
its own specialized tools. However, there is a subset of tools which are
vital to any MDS. These include the command language interpreter, the
compiler, the linker, the debugger, and the text editor. Each of these is
discussed in some detail in subsequent chapters. Other tools of somewhat
lesser importance, such as the cross-reference generator and the lister are
discussed in less detail.

For each system component, a design rationale is provided along with the
specification. The System itself and the major tools are described in a
pseudo-B5 format; the Quality Assurance section was omitted, and the
specifications are somewhat less formal than a genuine B5 would be. These
specifications are contained in seven accompanying volumes: MDS Operating

68

JOVIAL/Ada Microprocessor Study Final Technical Report

System, Database System, Command Language Interpreter, Ada Compiler, Linker,
Debugger and Text Editor. The compiler has received the most attention,
since, according to the statement of work [SOW], it was supposed to be
emphasized. The minor tools are described less fprmally in Chapter 18 of this
report.

10.5 System Structure

Whether or not the system should be of a distributed type is one of the
fundamental issues with regard to the system design. The fact that
microcomputers are so much cheaper than larger-scale computers makes
realistic, configurations which would have been unthinkable with more
primitive technologies. In particular, it is realistic to consider giving
each one his own CPU. An isolated CPU with a single-user system is
unrealistic for serious development work, but it is possible to arrange
single-user work stations in a network so that users may communicate with each
other.

There are advantages and disadvantages to both the network and more
traditional multi-user configurations.

The single-user workstations communicate with each other via a network. It is
possible to have configurations in which each user has local secondary storage
or where all secondary storage is on a common database machine. The
advantages of such a system are as follows:

1. The operating system is simpler; the development cost
would be lower.

2. There is less system overhead (time and space).
3. There is likely to be better CPU response.
4. Each workstation can serve as a backup for the others.

On a single-user machine the operating system on each work station can be
simplified, since it is not necessary to address issues such as context
switching, protection of one user from another and database synchronization
issues except with respect to Ada tasking. The database machine would have to
address issues such as preventing two users from accessing a file in a
conflicting manner. Most of the more recent microprocessors distinguish
between system and user modes, so it is relatively easy to protect the system
from the user. There is not always a simple means, however, for protecting
one user from another.

Since the operating system has less to do, there is less system overhead in
terms of both time and space.

69

JOVIAL/Ada Microprocessor Study Final Technical Report

In practice there is likely to be better response to user commands with
single-user workstations because each user has his own CPU. This will
certainly be the case if there are two or more users on a multi-user system.
While it would be possible, in theory, to provide each user with his own
multi-user system and to arrange them in a network, it is unlikely that this
would be done in practice, since this would incur the overhead from both the
single and multi-user strategies.

Another advantage of single-user workstations is that if a problem develops in
one, the other workstation can still function. In a multi-user system, all
users of the system would be prevented from using the system if it went down.

There are areas, however, in which the multi-user strategy is preferable.
These are as follows:

1. The ability to run background jobs
2. Lower hardware cost
3. More flexible use of resources

The multi-user system already has the capability to run multiple processes, so
it is relatively easy to add the ability to execute jobs in the background.
This is useful in that a user can perform highly interactive work in the
foreground, while time-consuming jobs are executing in the background.
Printing, document formatting, compiling, linking and other such tasks can be
performed without preventing the use of the terminal. Spooling could be done
easily by the database computer in the workstation strategy, but adding the
capability to run general background jobs at the workstation would eliminate
the advantage of having a smaller system for a single user.

There is also a lower hardware cost associated with a multi-user system. In
order to run a large job on a work station, the workstation must have enough
memox'y. On a multi-user system, the total amount of memory may be smaller if
most programs are small, because only as much memory as is actually being used
at a given moment need be allocated to a user. The network requires hardware
for communication and additional CPUs as well.

The additional hardware cost is becoming smaller, however, and in a few years
may be so small relative to software costs as to be negligible.

The fact that resources may be used more flexibly on a multi-user system is
closely related to the lower hardware cost. Memory, in particular can be
allocated as needed. Also, it is possible to add users more easily, since all
that would be required is a port and a terminal. There would, however, be a
response-time penalty.

70

JOVIAL/Ada Microprocessor Study Final Technical Report

11. OPERATING SYSTEM

The operating system must provide a number of facilities for its users. In
addition to protecting users from one another and allocating resources, the
system, together with the runtime library routines, provides a virtual machine
interface at a higher level than that provided by the hardware. It ispossible to keep this virtual interface constant for various host machines,enhancing the portability of programs which run under the MDS.

11.1 System Functions

There are a number of classes into which system functions fall:

1. Login/logout
2. Input/output
3. Get/release space, resources
4. Process handling
5. Ada tasking support
6. Date, time accounting
7. Program load
8. Debugger interface

Login and logout serve primarily to associate a user with a process. As part
of the login procedure an initialization program may be run. Logout serves to
disassociate a user with a process. Strictly speaking it is unnecessary, but
having a specific logout helps cotifiguration management in that the next user
of a given terminal is required to provide identification.

Input and output support provides low-level support for the packages
INPUTOUTPUT and TEXT_10. The system input and output routines are not
generic; operations are on files of packed arrays of bits.

I/O support procedures exist for each procedure defined in the package
INPUTOUTPUT as well as the following procedures:

1. Pipe - establishes a pipeline
2. Standardinput/output - returns the name of the standard

input/output object, which may be used as an argument to
create.

3. Currentinput/output - returns the name of the current
input/output object.

4. Setinput/output - sets the name of the current
input/output object to its argument.

Terminal I/O support procedures exist so that tools can perform I/O to

71

JOVIAL/Ada Microprocessor Study Final Technical Report

terminals in a terminal-model-independent fashion. Note that 1/O to a
terminal which is being used as a sequential file is performed exactly as 1/O
to a disk file, from the caller's point of view. However, certain functions
(e.g. clear screen) are meaningful only if the device is a VDT. It is for
these sorts of functions that the terminal I/O support provides a uniform
interface.

The get and release space routines allow user programs to expand and shrink
within the limits of memory.

Process handling facilities allow background jobs to be created, processes to
be terminated, and the interrogation of the process state.

Ada tasking support provides the primitives necessary to implement v-5king as
described in [Ada Reference].

Date and time allow the return of the current date and clock time. In
addition, there is a facility for setting the date and time.

Program load provides a means of loading and executing a user program or of
loading an overlay.

The debugger interface facility allows the debugger to operate in a separate
address space, but to bypass the normal protection mechanism in order to
examine or modify the program being debugged.

11.2 Terminal Input Editing

The system provides a standard, rudimentary editing capability which is
available to any program which does line-at-a-time terminal input. To a
certain extent, this processing is transparent to the calling program. The
caller only sees the final edited line; there is no difference between an
edited line and one which was originally entered correctly. The process is
not fully transparent, because it may not be used by programs which require
input a character at a time (i.e., programs which respond to characters before
a carriage return is entered).

Editing features which are available are:

1. Cursor movement (non-destructive)
2. Character delete
3. Line delete
4. Character replace
5. Character insert
6. Line echo

72

JOVI&L/Ada Microprocessor Study Final Technical Report

7. Line restore

The first five features described here allow typographical errors to be

corrected. The cursor movement feature was included because errors are often

not detected until after additional characters have been typed. Allowing

non-destructive cursor movement means that only corrections need to be made -
it is not necessary to retype the rest of the line. Characters are deleted

with cancel (control-X). Characters are replaced by entering control-R, the

replacement characters and the system string terminator (default "/"). The

terminator character may be entered by preceding it with the system escape

character (default "\'). Thus "\/" replaces a single character by a slash.

The escape character may be entered by typing two consecutive escape

characters ("\V'). Characters are iiserted simply by typing them. They are

entered at the position in the line to which the cursor points.

The line echo facility prints the line as edited. This allows the user to see

the result of the editing before submitting the line to the command processor

or some other consumer. Echoing is requested with control-E.

The line restore facility allows the previously entered line to be edited and

resubmitted. This can be of use if the command processor detects an error,

particularly if the command line was lengthy. If a control-E is entered

before the first character of a new line is entered, the previously entered
line is echoed and is made available for editing.

Note that the characters described here are the defaults; the actual

characters used may be changed by the user.

73

JOVIAL/Ada Microprocessor Study Final Technical Report

12. DATABASE

The MDS Database is the repository for programs, data, documentation and other
information. Distinguishable entries in the database are known as objects.j

The MDS database provides additional features above and beyond a "bare-bones"
file system, but is conservative enough so as to be implementable. The
primary difference between the MDS database and an ordinary file system is the
relational aspect of the database. Objects have attributes associated with
them. These attributes allow relations between objects to be maintained. In
addition, attributes may be used to record information about individual
objects. Attributes are discussed further in section 12.2.

Microprocessor systems typically have separate directories for different
devices and volumes, without a higher-level directory which points at the
devices or volumes. Thus, it is usually necessary to specify a device (such
as a particular disk drive) or a volume (such as a floppy disk name). This
becomes inconvenient, so it was decided to include a master directory in the
system, along with a search capability. This is not strictly necessary but it
makes the system more useable.

Another feature that is included is automatic file allocation and linking.
Allbcating files contiguously would simplify the file handler, but would cause
problems for users once the disk storage became fragmented. There are
microprocessor systems which allocate filen contiguously, and those which use
linked allocation. At least one large-host system (OS/360) requires that
files be pre-allocated and that disk storage be compressed when all of the
space has been allocated, even if portions have been freed. This may be
acceptable in a production environment, but in a development environment,
where files are constantly being created and deleted, this creates a hardship
for the users of the system.

Another feature of the database is keyed records. Line keys afford a fixed
reference point for source text throughout the development cycle. This is
particularly useful in pinpointing the source of error when the compiler is
run with listings turned off. Even if a listing is obtained, having fixed
keys allows the user to advance immediately, within the editor, to the point
in the file at which corrections need to be made, without having to scan the
text or to try to find a unique character F!tring.

The keys can also be used to make it easier to distribute source changes for
prigrams whict are used on multiple systems. As long as the source file is
not renumbered (and this should only be necessary for large-scale changes),
the user's and maintainer's line numbers will be the same.

74

JOVIAL/Ada Microprocessor Study Final Technical Report

Line keys may be ignored by programs which choose to do so. Keyed files may
be read as if they were unkeyed text files.

Most of the other database requirements are imposed by the Ada definition. In
particular, the database must be able to meet the requirements of the packages
INPUTOUTPUT and TEXT_10. Additionally, these packages must be augmented to
allow keyed records to be processed.

No serious development system would be complete without a backup system.
While Winchester disks are reportedly extremely reliable, there is still a
chance of a malfunction. Since Winchester disks are usually not removable,
and since their capacity far exceeds that of floppy disks, additional hardware
is required in order to allow convenient file system backup. In addition,
there must be software to enable files to be saved and restored. Cartridge
disks do not require additional hardware for backup, since the cartridges are
removable.

Files are more likely to be in jeopardy due to user error, rather than
hardware failures. The file system can provide some help in this area,
however. One particular method is to allow files to be marked as read-only or
not-deletable. This can prevent files from being deleted due to simple
typographical errors. Such a facility is valuable, is also easy to implement,
and is, in fact, in existence on some present-day microprocessor systems.

It sfould be noted that several companies offer relational data base packages
for mi' rocomputers, although it is not clear how comprehensive these packages
are.

The database provides configuration management aids in the form of attributes
and tools. A discussion of configuration management requirements can be found
in [Mooney~li.

12.1 Utilities

There are a number of high-level utility programs which provide services for
the user. These utilities may be executed at the coummand language level or by
means of procedure calls. Utilities provided are:

I. Object copy
2. Object renaming
3. Object compare
4. List partition members
5. Create partitions
6. Add/delete partition members.

75

JOVIAL/Ada Microprocessor Study Final Technical Report

12.2 Attributes

One of the most important features of the database is attributes, which
provide a number of facilities not found in conventional file systems. These
include:

1. The ability to have tools handle different data base objects in
different ways depending on attribute values.

2. The ability to record relations between objects in the database in a
convenient, uniform way.

3. The ability to query the database in a general way.

Attributes are also used to maintain the information, such as object sizes and
creation dates and times, which is normally found in directories.

There are a number of system defined attributes that are maintained by the
various tools described in this report. These include:

INCLUDES - objects included by the attribute owner via
the include pragma.

DEPENDSON - objects which the attribute owner depends on
(in the sense of compilation order rules).

COMPILEDFROM - (primary) source object which was compiled to
create the attribute owner.

COMPONENTOF - objects which were linked together to form the
attribute owner.

SUBUNITS - subunits for which stubs are present in the
object

SUBUNIT OF - parent unit to this subunit

VERSION - version of the object (see 12.3)

REVISION - revision of the object (see 12.3)

DATECREATED - date when the object was created

TIMECREATED - time when the object was created

CREATOR - tool and user which created the object

76

JOVIAL/Ada Microprocessor Study Final Technical Report

OWNER - owner of the object (presumably the user
responsible for the object)

DERIVEDFROM - objects of which the attribute owner is
a descendant

Facilities exist to perform the following operations on attributes:

1. Create attributes
2. Read attributes
3. Set attribute values
4. Protect attributes
5. Delete attributes

The attribute system is open-ended. Users may create their own attributes for
human use or for use by tools. It is, of course, necessary to be able to set
and read attribute values. The protection of attributes is primarily to
maintain the integrity of attribute values for those attributes which are
manipulated by tools, for example, those which deal with compilation order.
Allowing users or tools other than the compiler to modify those attributes
could lead to compilation order violations which, in turn, could introduce
bugs in the executable program.

12.3 Versions and Revisions

The database provides for both versions and revisions. Versions of a
configuration exist for different purposes (e.g. for different target
machines) while revisions represent modifications to specific versions -- a
revision is temporally later than its predecessor. Revisions and versions are
not strictly necessary in the sense that they could be simulated by file
renaming. However, they make it easier for both the user and the operating
system to keep track of the development history of an object.

The system allows both official and unofficial revisions. Official revisions
are members of an established configuration, unofficial revisions are not.
Unofficial revisions are assumed to be relatively short-lived, for example,
the revisions which are made during the checkout of an upgrade of some
program. Once a new (official) revision is created, the temporary revisions
which were created since the last official revision may have outlived tbeir
usefulness.

Fewer controls are placed on unofficial revisions. They may be updated or
deleted without restriction.

77

JOVIAL/Ada Microprocessor Study Final Technical Report

Both revisions and versions are attributes of database objects or library
members. Since the revisions and versions will often be used to distinguiab
between various objects or members of the same name, a shorthand syntax is
introduced into the command language to allow them to be specified more
conveniently. The syntax for a version is:

:version-designator

and for a revision

official-revision C .unofficial-revision]

Note that a revision which is an official revision will be missing the "." and

the unofficial number.

12.4 Program Library

The Ada program library serves as a single centralized mechanism for

maintaining all of the program unit specifications and program bodies required
in the development of a set of programs under that particular program
library. It is used both as input to the compiler and linker and acts as the
repository for recording the results of the compilation and linking of a set
of related compilation units.

The program library provides a mechanism to be used in the compilation and
linking of a set of related programs to insure that the consistency of the
programs is maintained and that the order of compilation rules of Ada are
enforced in a controlled fashion. Ada defines the program library in terms of

the compiler and compilation order rules; however, including the linker
function is a natural extension to the Ada program library and does not
compromise the concept in any way.

A program library need not necessarily represent a "porm in the usual
sense; it could, for example, contain a collection of one or more sub programs
or packages used in the development and testing of other programs.

The program library is the means by which the user controls which package and
sub-program specifications and bodies are available for use when compiling or
linking programs.

A program library will be represented in the data base as a cocrpound object of
category 'LIB. It contains (at least in a logical sense) program
specifications and bodies.

78

JOVIAL/Ada Microprocessor Study Final Technical Report

12.4.1 Background

The output of the compilation of a compilation unit (sub-program or package)
includes a program unit specification (Ada object of class 'SPEC') and 4
possibly a program body (Ada object of class 'BODY').

The program unit specification (often referred to as the unit spec) is an
internal encoding of the specifications of those Ada entities defined by the
program unit.

The program body is an internal encoding of the relocatable library
representation of the compiled program unit; this includes the program
templates resulting from generic declarations and from INLINE sub program
declarations.

The compilation of a compilation unit (sub-program or package) requires as
input the program unit specification and possibly the program bodies of those
program units referenced by the program being compiled and produces as output
a program unit specification and possibly a program body of the compilation
unit being compiled as described above.

It is a major concern of all program development systems that all of the
program units in a system be consistent. For example, a sub-program body must
match its specification and all programs which reference that subprogram must
use that single correct specification.

In most present program development systems, manual procedures are used to
''insure" program consistency.

In Ada, the concept of a program library has been defined to be used along
with the compiler, the linker and the library maintenance tool to rigorously
insure and maintain the consistency of the set of programs being developed
within a program library.

The concept of a program library in Ada is a simple one - it is the set of all
library units (program unit specifications and program bodies) needed for the
development of the programs within the library.

A "consistent" program library is one in which all of the program units in the
library have been compiled in an order defined by the order of compilation
rules in Ada. The program library tool does not guarantee that the program
library is consistent but rather allows the consistency of the program library
to be verified.

79

JOVIAL/Ada Microprocessor Study Final Technical Report

12.4.2 Library Contents

A program library contains the following elements:

Program Unit Specifications

Unit specs are produced and initially recorded in a program library by
the Ada compiler. A unit spec may have any number of associated
program bodies in a library.

Program Bodies

Program bodies include both relocatable binaries and generic
templates. Each program body is associated with a single program unit
specification in the library.

Linked Program Units

The linker produces a program library unit which contaims a program
unit specification and an associated program body in the same format
as that produced by the compiler. The output of the linker can be
recorded in a program library just as the output of the compiler.

A program unit spec or program body may be contained in several program
libraries. It is logically contained in each library, and users may
manipulate the spec or body, independently of whether it exists in other
libraries. However, only one physical copy exists. The system must insure,
for example, that deleting a spec or body from a library only removes it from
that library, and does not delete the physical entity, if it exists in other
libraries.

12.4.3 Program Library Maintenance

Maintenance of the program library is carried out in one of three main way.:
through the library mantenance tool, by the compiler and by the linker.

Library Maintenance Tool

The library maintenance tool allows the user to manipulate program libraries
through explicit commands. Operations available through the library
maintenance tool will include the following:

" Program libraries may be created.

" Program libraries may be deleted.

80

JOVIAL/Ada Microprocessor Study Final Technical Report

0 Program libraries may be copied.

* New versions of program libraries may be created - this is essentially a
copy.

* Program unit specifications and their associated program bodies, if any,
may be copied from one program library to another.

* Program unit specifications and/or their associated program bodies may be
deleted from a program library.

In normal operation, once a program library is created and initialized with
the externally defined program specifications and bodies needed for the system
or set of programs being developed in the library, most program library
maintenance vill be performed automatically by the compiler and linker.

Compiler - Program Library Maintenance

The normal input to the compiler consists of the source of a compilation unit
and a program library.

All program unit specifications and program bodies required by the program
being compiled must be "contained in" the specified program library.

The output of the compiler includes a program unit specification and/or a
program body (objects of class 'SPEC' and 'BODY'); these outputs are recorded
in the specified program library and all the necessary library dependency
attributes are updated.

Linker - Program Library Maintenance

The normal input to the linker consists of linke directives and a program
library.

All program unit specifications and program bodies required to validate and
create the linked structure must be "contained in" the specified program
library.

The outputs of the linker include a program unit specificaton and a program
body of the linked structure (objects of class 'SPEC' and 'BODY'); these
outputs are recorded in the program library and all necessary library
dependency attributes are updated.

81

JOVIAL/Ada Microprocessor Study Final Technical Report

12.4.4 Program Library Dependency Attributes

A record of the interdependencies of all program unit specifications and

program bodies within a program library wili be maintained by the compiler by

means of the dependency attributes.

With the dependency attributes the consistency of the programs in a program

library can be controlled and maintained.

Program Unit Specification Dependencies

Each program unit specification in a program library will contain a list of

all the unit specifications which it depends on and a list of all the unit

specifications and program bodies which depend on it.

Program Body Dependencies

Each program body in a program library will contain a list of all the unit

specifications and program bodies it depends on and a list of all the unit

specifications and program bodies which depend on it.

12.4.5 Multiple Versons and Revisions of Library Units

The Ada manual does not consider having multiple versions or revisions of the

same compilation unit in a program library.

Since multiple versions and revisions of program units are a practical

requirement it must be decided whether to extend the program library to allow

multiple versions and/or revisions of the same library unit in a program

library.

Disallowing multiple versions and revisions in a program library 'simplifies

the library somewhat, since no rules need to be defined for choosing between

duplicate program unit specs or bodies at compile or link time.

If multiple versions of program units are not allowed in a library, a user

would be required to create multiple versions of the li"cary in order to

create multiple versions of a program.

Reverting to a previous revision of a program becomes more complex if the

revision is not contained in the library.

Allowing multiple revisions in a program library does offer increased

82

JOVIAL/Ada Microprocessor Study Final Technical Report

flexibility at the cost of potential confusion to the user if used
indiscriminately.

Since allowing multiple versions and revisions in a program library does offer
increased flexibility, and since it is not difficult to support and would be
optional, the HDS program library was designed to support multiple versions
and revisions of programs.

12.4.6 Partially Linked Modules

The concept of partially linked modules is beyond the scope of the Ada
language definition and it is not a requirement that a program library support
partial links. In fact, extending the program library concept to include
partial links introduces a problem which would not otherwise arise. The
problem is that the program bodies which are included in a partial link
duplicate program bodies which will satisfy the associated program unit
specifications - thus requiring a rule to determine which of two or more
bodies should be used to satisfy a reference when performing a subsequent
link.

However, because of the practical convenience of partial links we feel that
the program library should support this feature.

The problem of choosing between duplicate program links is resolved by only
selecting a partially linked program body if it is explicitly included in the
link structure with an INCLUDE directive.

This approach retains the convenience and efficiency of partial links and
still satisfies all normal linker usage.

12.4.7 Non-Ada Programs

Ada provides for interfacing with subprograms written in another language
through the INTERFACE pragma in the subprogram specification, the actual body
of the subprogram will be written in some other language as specified in the
pragma.

An object module conversion tool will be provided which will convert an object
module produced by some other language processor into a standard Ada format,
the converted module will be added to a program library as the program body of
its associated program specification.

Which foreign languages are supported (e.g., FORTRAN) will be determined for
each target.

83

JOVIAL/Ada Microprocessor Study Final Technical Report

13. COMMAND LANGUAGE INTERPRFTER

The editor and the command language interpreter are two parts of the system
which are most visible to the user and which tend to arouse a great deal of
emotion, both pro and con. The command language is necessary to allow the
user to initiate processes. It should facilitate running programs, and not be
a deterrent.

There are a number of issues regarding the design of the command language.
One of the more important issues is how much the command language should
resemble the system's predominant (or only) programming language, in this
case, Ada. One environment in which the command language and. the progr ing
language are essentially the same is Interlisp [Teitelman8l1. It has been
suggested that Ada be used as the basis for the command language f or the MAPSE
IStonernan8Ol, but it has also been argued that Ada is not well-suited for this
tBrender8Ol.

We feel that the nature of Ada and the normal usage of command languages
conflict to the extent that it would be unwise to attempt to retain too close
a relationship between the command language and Ada. Ada was designed as a
language for the implementation of systems for embedded computers. One of the
chief aims of the language designers was readability, since many embedded
systems have long lives. In contrast, many commands are never viewed by
anyone other than their author and the command language interpreter. A large
number of commands are only executed once, so ease of entry becomes -more
important than readability.

Ada tends to be somewhat wordy and has a complex syntax. A command langua~ge,
particularly one which must be interpreted on a small host, should be
simpler. It is worth noting that LISP has a very simple syntax. Thus, it
lends itself more to being a command language than does Ada.

An additional problem with using Ada as a command language is that Ada is
oriented more toward the use of variables than toward the use of constants,
such as character strings or enumeration values. The invocation of a typical

s ystem command or user program normally involves passing such items as file
names and flags to the programs. In an interactive environment these will
most often be constants, except during the execution of a command file. Thus,
it becomes inconvenient to have to quote file names, since they occur so
often. It should be noted that Interliap recognizes this problem, also.
Commands which are typed in are evaluated using EVALQUOTE which assumes
quoting of arguments. On the other hand, during the execution of a LISP
program, quotes are not the default.

Another issue is the level of the command language. It is possible to draw an
analogy between command languages of various levels and programming languages

84

JOVIAL/Ada Microprocessor Study Final Technical Report

of various levels. [Snodgrass8O]. At one end of the scale is 0S/360 JCL.
"As with assembly language, anything is possible in JCL and almost everything
is difficult" [Snodgrass8Ol. Command languages with some basic control
constructs are likened to FORTRAN. More advanced command languages are
compared with Algol. The language developed by Snodgrass was object oriented
and could be likened to programming languages such as SIMULA.

The MDS command language falls toward the lower end of the third class, that
which is analogous to Algol. The command language has recursive procedures
and scoped variables.

There are a number of systems which have influenced the design of the
Microprocessor Development System command language. The most important
influence is that of the Unix shell, both directly and through the AIE designs
[CSC/SEA81, Intermetrics/MCA81]. Large host systems which had some influence
on the design are TOPS [DEC78], TENEX [TENEXI, CSTS (CSC74] and Multics
[Multics]. IBM JCL was a negative influence, since it is exceedingly
complex. Some microprocessor systems which were examined are UCSD Pascal
[UCSD] and CP/M [CP/M78, ZaksBO].

It should be noted that there are already microprocessor hosted
implementations of Unix and Unix like systems [Electronics, April 7, 19811.

The design aims which shaped the command language are as follows:

1. Common operations such as program initiation should be simple.

2. The command language sould be easy to implement in a small amount of

space.

3. The language should allow for expansion as hardware costs decrease
relative to labor costs.

4. The command language should provide flow-of-control constructs.

5. The syntax should be the same for commands read from the terminal as
from a command file.

The following discussion touches on some of the highlights of the command
language. A formal definition of the command language syntax is given in the
specification of the CLI (Volume 2).

The command language proposed for the MDS may be described as a cross between
Ada [Ada Reference] and the UNIX shell language [Bourne78]. The Ada influence
is felt most heavily in the control constructs; the UNIX influence in the

85

JOVIAL/Ada Microprocessor Study Final Technical Report

program/procedure invocation syntax.

Since it was felt that control constructs were less likely to be entered
directly from a terminal (since a user can make a decision as to what to do
after the previous program or procedure has been executed), the wordiness of
Ada is not really detrimental. On the other hand, it is very common to invoke

*a program or CLI procedure interactively. Therefore, the commas and
parentheses in the Ada syntax for procedure invocation were made optional.

* Pipelining and input/output redirection are popular and useful features of the
UNIX shell command language. They make it easier to compose more complicated
tools from simpler areas. Although these features are not strictly necessary,
they are convenient for the user, and have already been implemented on
microcomputers [Lycklama78, Cherlin8l).

A major design issue for the command language is what to do about
declarations. We felt that it was imperative to deviate from Ada here in
order to spare the user from having to declare every command language
variable. The only declarations which are required or permitted in the
command language are those for parameters to command language procedures. The
only operand types permitted in the command language are strings and lists of
strings. Since literals are expected to be more common than variables, quotes
are not required on strings unless they contain any of the delimiters: space,
comma or parentheses.

Although the only data types are based on strings, some integer arithmetic
operators are provided. Strings which are operands of these operators must be
character strings representing integers. (Recall that since quotes are not
required, they may be written as simple integers.)

One feature of the command language interpreter which is of particular
interest is parameter checking. Rather than requiring each program or tool to
check its own parameters for validity, the CLI performs some rudimentary
checking itself. Information pertaining to parameters is stored by the linker
in the executable object. The CLI makes use of this information to perform
validity checking on those parameters which are of type integer, boolean, and
file name (a type which is defined in package SYSTEM. Note that string
parameters require no checking and that lists of strings are turned into
variant records with the CLI supplying the count of the number of strings.

There are user-specifiable search rules which allow a number of partitions to
be searched, in order, when a program is executed. Thus, during development
it is possible to specify that the most stable, or most experimental versions
of programs be used as defaults. In addition, it is possible to specify a
particular library to be used when one is not explicitly supplied to a tool.

86

JOVIAL/Ada Microprocessor Study Final Technical Report

Example:
Set-default-part *testlib
ada test
link test
test

87

AD-A16 352 SOFTWARE ENGINEERING ASSOCIATES INC TORRANCE CA F/G 9/2
JOVIAL/ADA MICROPROCESSOR STUDY.(U)
APR 82 T E DEVINE. T L DUNBAR, M B LITTLEJOHN F30602-0-C-0153

UNCLASSIFIED RADC-TR-82-61 NL

MENOEEEEEEEm IEIIIIIoE
EilllEEllllI
II.'.'.III

_____2 2

_ _ 1.8

1.25 1.411_L6

JOVIAL/Ada Microprocessor Study Final Technical Report

14. ADA COMPILER

The compiler is one of the most important, if not the most important, of the
the MDS system tools. Since the system itself will be coded in Ada, the
efficiency of the code generated by the compiler will affect the performance
of the system.

There are three separate sets of issues which were addressed during the design
of the compiler. These categories are:

1. Ada language issues
2. Issues resulting from the size of the host
3. Compiler useability issues

Ada is a large language, containing a number of features whose implementation
is complex in and of themselves, but which become even more complicated when
they interact with other features. These features include: generics, in line
procedures, overloading, separate compilations, tasking and exceptions.

The size of the host system can impose considerable constraints on the
compiler design. Indeed, if the size constraints are severe enough, meeting
these constraints can become the primary consideration. When the 128K goal
was selected, it represented a compromise between a minimum hardware
configuration and one which would be sufficiently large so that size would not
be a major issue.

The 128K size does impose constraints on the size of the compiler and of
compiled programs, but these constraints are not unreasonable. It is
necessary to break the compiler up into a greater number of memory loads than
would be necessary for a compiler which was designed to run on a larger
system. It is also necessary to sacrifice some conveniences, and processing
time as well, in order to make the individual phases smaller.

14.1 Symbol Table

One of the most important factors with respect to the region required for a
compilation is symbol table strategy. Having a resident symbol table
simplifies the logic of the compiler, since it is not necessary to have a
mechanism for bringing in, or writing out, the symbol table or parts thereof.
However, this can require large amounts of space. Measurements made with the
SEA J73 compiler indicate that modules in the 4000 line range require around
60,000 bytes of symbol table space, exclusive of that required for names and
defines. One module of approximately 5800 lines required over 90,000 bytes
for the symbol table (see Appendix D).

88

JOVIAL/Ada Microprocessor Study Final Technical Report

An alternative strategy would be to have a virtual symbol table. This would
be a good approach on a system which provided hardware virtual memory,
provided that references to the symbol table exhibited locality. However, at
the present time, microprocessors do not provide sufficient hardware to allow
this to be done. This situation is expected to change soon, however, since
Intel, Zilog, and Motorola are developing chip. which will permit virtual
memory tCallahan8l, Johnson8l].

It would, of course, be possible to simulate virtual memory in software. This
could be done most easily in an interpretive system. Accordingly, the
compiler could be coded as if the symbol table were resident. A virtual
memory facility could be provided in a native-code system but this would
require special subroutine calls prior to symbol table references and after
symbol table entry modifications. In such a scheme a pointer would be
obtained by calling one of the virtual memory routines, which would return a
pointer if the symbol table entry was already in memory, or would cause the
entry to be brought in, as necessary. An approach which follows this method
is described in [Intermetrics8l).

The software virtual memory approaches are conceptually clean but could cause
a rather severe degradation of compiler performance, since every new reference
to a symbol table entry would require a subroutine call. In a hardware
virtual memory system, the cost of memory (in terms of execution time) shows
up only when a page fault is generated.

We rejected the virtual memory approaches for two reasons. First there is
not, at the present time, hardware which will permit this to be done. While
such hardware is expected to be available Ln the near future (and certainly by
1985), assuming hardware virtual memory would preclude the use of any system
which did not provide this feature. Second, although, software virtual memory
is certainly implementable at the present time we felt that its effect on
compiler performance would be unacceptable.

The approach chosen was to flush those portions of the symbol tables which
become invisible due to the scope rules. This approach works best in a one
pass compiler, because when a scope is flushed, there is no reason to bring
back that portion of the symbol table again. Since the compiler design
presented here uses multiple passes, it is necessary to bring scopes back in
when they are entered in subsequent phases.

The UCSD Pascal is an example of a one-pass compiler which uses such an
approach. At any given time, the only information in the symbol table is that
which is visible from the scope currently being processed. The symbol table
is built on the heap. At the start of a scope, the heap top is marked. At
scope exit, the heap space down to the mark is released.

89

JOVIAL/Ada Microprocessor Study Final Technical Report

Because these are some differences in the scope rules of Ada and Pascal
(primarily due to packages and overloading), the same method cannot be used
directly. However, it is possible to flush data which will not be needed
until the next phase. Since a multi-phase implementation is envisioned, it is
necessary to insure that any symbol table entries which are modified are
written out so that information is not lost between phases.

Another major design decision is where to place the symbol table. There are a
number of arguments for placing it in the heap. This allows entries in the
symbol table to be of variable size, and allows for the expansion of the
symbol table to the maximum size of the heap.

On the other hand, there are some serious disadvantages to using the heap for
the symbol table. Heap pointers are inherently larger than entry indices.
Thus, symbol table entries which contain pointers are larger than they would
be if they only contained indices. This increases symbol table size, which is
a problem on a small system.

There is also a cost associated with flushing the symbol table at the end of a
scope. There are two problems here. The first is that, unless some
assumptions can be made about the heap allocation mechanism, it is not
possible to write out the symbol table in blocks. This assumption would
require that heap space is allocated linearly. While this could be done, it
would detract from the portability of the compiler. Another problem is that,
unless a conversion is performed, heap space pointers would be written out and
read back in. This would cause dangling pointer problems, unless it could be
guaranteed that the symbol table fragment could be read in to the exact
locations from which it was written and furthermore, that none of that space
had been reallocated for another purpose in the meantime.

We felt that for a multi-pass compiler the disadvantages of using the heap
outweighed the advantages. For this reason the compiler design incorporates a
symbol table which is implemented as an array of records, rather than in the
heap. Tbis allows the use of short pointers (16 bit indices, for example) and *
allows segments of the symbol tablc to be read or written as blocks.

There are some disadvantages to this approach also. The most important
disadvantage is with respect to symbol table expansion. It is possible to
obtain space for the symbol table based on the amount of memory available to
the compiler. It would be difficult, however, to expand this table once space
had been obtained without resorting to trickery, such as turning off subscript
range checking and using subscripts outside the range of the array. This,
however, can be quite dangerous. The other disadvantage is that the size of
the symbol table has an absolute maximum of number of entries based on index
size. If index fields are declared to be a certain size, say one 16 bit word,
then it is only possible to address 64K entries in the symbol table,

90

JOVIAL/Ada Microprocessor Study Final Technical Report

regardless of bow much space is obtained. This does, however, seem to be a
reasonable limit for the symbol table.

There is also somewhat of a problem with respect to the size of symbol table
entries. If entries are of variable lengths, space will be wasted if entries
are allocated based on the maximum size of an entry. On the other hand, if
arrays are implemented in such a way as to allow for variable length entries
(such as by means of a hidden pointer array), array references will not be as
efficient. The approach which will be used here to get around this problem
will be to use fixed length entries and to use auxiliary entries for those
classes of entries which require more information than may be contained in the
entries.

Another approach which was considered but rejected is the distributed symbol
table approach, such as that used in Aida [PerscbSO]. In this approach, there
is no symbol table, per se. The problem with this sort of approach is that
information cannot easily be added to the symbol entries after resolution has
been performed. Of particuliar concern here is information such as the use
counts and reference contexts of operands (results), which can be helpful in
generating better code.

14.2 Compiler Structure

Another major design decision is whether to pass the source program by the
compiler or to pass the compiler by the source program. Typically, the
program is passed by the compiler. Each phase of the compiler processes the
entire source program (possibly in an intermediate representation) before the
next phase is loaded. In such an implementation each phase reads, some form of
the program and writes a modified version.

An alternative implementation is to pass the compiler by the source program.
In such an implementation, the source program remains in memory and compiler
phases are loaded in sequence. This allows a large number of small compiler
phases to act upon the program. Such a scheme is more attractive for a
language such as FORTRAN which has only one scope per compilation unit. For a
language such as Ada, this approach is less attractive, because the
alternatives are to hold all scopes in memory at once and load the compiler
phases just once, or to load each phase for each scope in the source program.

14.3 Useability

There are a number of issues relating to compiler useability which conflict
with some of the constraints discussed previously. In particular, providing
the features which make a compiler useful for the development of real systems

91

, I s

JOVIAL/Ada Microprocessor Study Final Technical Report

can require substantially more room than would be required for a "toy"
compiler.

Such features as cross-reference listings, and meaningful diagnostics make a
compiler more useful for serious program development. Object code quality is
another important requirement for a production compiler. For applications
such as embedded computer systems (for which Ada was designed), the code
generated by the compiler must not be less efficient than assembly code by too
large a margin.

A production compiler must be able to handle modules of a reasonably large
size. Ideally, the compiler should be able to handle any size module.
However, this goal conflicts with practicality considerations. Since the MDS
Ada compiler will run on relatively small hosts, we feel that the size
restrictions f or compiled programs may be somewhat more stringent than for
large-host compilers (cf. AIR) but must not be overly restrictive.

The design which is described here should be able to handle modules which are
several thousand lines long, provided that the compilation units are broken up
into reasonable-sized routines.

Compiler speed is another important consideration. While it is certainly
desirable that the compiler use a minimum of CPU time, a better measure of
compiler speed from a user point of view is wall-clock time, since that gives
a better indication as to how long the user is delayed, waiting for a
compilation to finish.

One of the major issues with respect to compiler design f or a small system is
whether interpretation should be used. Code size can be significantly
reduced, particularly on a host which does not possess a powerful instruction
set (UCSD78, Doneganl8j. For some of the older 8-bit microprocessors
interpretation is very attractive, since subroutines would be required even
for such simple operations as multiplication. However, the newer 16-bit
micros have instruction sets which are sufficiently powerful so that
interpretation is by no means a necessity, and would cause a substantial
reduction in speed. For this reason we favor a native code implementation of
the compiler.

One of the basic design goals was that the compiler should do a good job on
those things which are most common. Rare cases would be handled well, if
possible, but the rare cases would receive less emphasis.

One example of this is in generating code for expressions. There are any
number of algorithms which describe how to generate code for complex
expressions using the minimum number of registers. On the other hand studies
[Knuth7l, B1oom741 have shown that the vast majority of expressions which

92

JOVIAL/Ada Microprocessor Study Final Technical Report

appear in real programs are quite simple. For this reason our emphasis is on
generating good code £for simple expressions, rather than for more complex
ones.

Since resources are relatively scarce on a microprocessor, it is necessary to
be rather conservative for an initial implementation. It is likely that some
compiler "tuning" will be necessary, since Ada is a new language and
statistics on its usage are not yet available. It is possible to make
educated guesses as to the effect of new programming techniques such as the
use of abstract data types on the use of the language, but statistics of
actual usage would be more useful. The design described here accomodates such
tuning, since it is relatively easy to add additional phases as necessary.

There are a number of features which are new to Ada with respect to J73. How
these features are used will have an effect on compiler performance and may
provide opportunities for obtaining significant improvements by handling
certain common cases effectively. Some of these features are overloading,
generics, packages, operations on aggregates (including the ability to define
functions which return aggregates and tasking). It is likely that most
programmers will use relatively small subsets of these facilities heavily and
will largely ignore other subsets. This is, in part, because progrmers are
creatures of habit and partially because programs which use language features
which are in the mainstream are safer, since commonly used features are better
understood, and because the compilers are better checked out with respect to
these features.

14.4 Parsing Technioue

There are a number of candidates for parsing technique [Aho72J. We have
selected LALRUl) on the grounds that it is efficient as well as powerful
enough to be able to handle Ada with relatively few modifications to the
grammar. A LALRC1) grammar for revised Ada already exists [Persch8l].

14.5 Optimization

The design of the optimization phase(s) of the compiler is one of the more
critical areas with respect to the useability of the compiler as a development
tool for embedded computer systems. Since embedded computers typically have
limited resources, it is necessary that the code generated by the compiler be
both compact and fast. If compiler code is not efficient enough, the
developers of embedded systems may be tempted to resort to the use of assembly
language.

Optimization, however can be potentially costly during compilation, both in

93

JOVIAL/Ada Microprocessor Study Final Technical Report

terms of time and space. For this reason, optimizations must be selected on
the basis of a cost/benefits analysis, rather than because they sound
attractive. As was discussed previously, it is our intent to do a good job
for the high-payoff areas and to place less emphasis on the rarer cases.

14.6 Local Code Generation

Perhaps the most important area for the generation of good code is local code
generation. This is not strictly the province of the optimizer, but rather of
the code generator. In order for the code generator to generate good code for
the myriad special cases which occur, the generation routines must be provided
with sufficient information to make intelligent choices of code sequences.
Code must be generated in context. It is necessary to know how a result is
being used in order to generate good code. One common example of this is
boolean expressions in conditional contexts. There is no need to generate a
storable value for the boolean expression -- it is sufficient to set a
condition code, for example. Another example of where context information can
be used is in the generation of increment or decrement sequences rather than
load, add (subtract), and store sequences.

14.7 Callif Seguences

One place where a high payoff may be obtained, but which is often neglected,
is subroutine calling conventions. Often the compiler writer is limited with
respect to the types of sequences which can be used, due to previously
existing system conventions. Also, it is often desirable to provide traceback
information in the absence of a source-level debugger. The MDS system can
assume the presence of such a debugger, so it is not necessary for traceback
information to be included in the resident object code - the debugger can
obtain the information from the non-resident debugging tables.

The Ada program library and recompilation rules make it possible for the
compiler to use "negotiated" calling sequences rather than standard calling
sequences, by recording the appropriate information in the library. For
example, it may be desirable for a given subroutine to receive one of its
parameters in a certain register. The compiler could generate code for the

s ubroutine, taking advantage of this fact, and record the parameter
conventions in the library as part of the subroutine specification. When a
caller is compiled, this information would be available. This would enable
consistent code to be generated. If the subroutine were recompiled with a
(compiler-generated) change to the calling convention, this would be handled
in the same way as if a (user-generated) change had been made to the
specification.

94

JOVIAL/Ada Microprocessor Study Final Technical Report

14.8 Addressing

Addressing optimizations are another source of substantial savings, primarily
with respect to code size. Many architectures, including most of the more
recent microprocessors, have short and long forms for addresses. Often the
short forms are half the size of the long forms. Host machines of recent
vintage offer two forms of addresang for branches. Many also offer different
address lengths for operand references as well.

While the basic ideas behind the two types of optimizations are the same,
there are some significant differences. Most often the branch optimization is
based on the use of a relative branch, rather than an absolute jump. In the
usual case, the branch is relative to the program counter. For references to
data, the choices are usually between a reference relative to some register
which contains a base address, and the use of a full address. Another
possible alternative for some architectures is to use a short pointer to a
long address and to use indirect addressing.

It is not necessary for the compiler to allocate the program counter, since it
must exist, anyway. For data reference, however, if cover registers are to be
usei, code must be generated to load a register. This may be done by
convention (as is often done with the local frame pointer) or as the result of
an optimization decision. While the compiler has the freedom to reorder code
to create a higher proportion of short to long references for code, payoff
would likely be too small to justify such an effort. On the other hand, the
reordering of data is likely to produce results which do justify the effort
expended. Data can be allocated so as to allow more commonly referenced data
to be accessed using short addresses.

14.9 Except ion Checking

Generating worst-case code for subscript checking and range checking can lead
to enormous increases in both the size and execution times for programs in
which checking is not suppressed. Increases of over 1002 in execution time
have been observed in this study and elsewhere [Welsh78]. The difference is
less for interpreted code than for compiled code, but it is still
substantial. For a bubble sort test case the increase in execution time was
100% while for interpreted code it was 281. For quicksort the differences
were even more dramatic - 2821 and 35%.

These results are somewhat extreme, since the test cases in question have a
larger proportion of array references than would be found in an average
program. However, even for a typical program, the cost of unoptinized
checking would be too great to ignore in an embedded computer eavironment.
While Ada allows checking to be suppressed via the suppress pragma, it is not

95

JOVIAL/Ada Microprocessor Study Final Technical Report

desirable to suppress checking if it can be avoided, since the elimination of
checking can allow bugs to manifest themselves in ways which conceal the true
nature of the problem.

Since the NDS compiler should encourage good programing practice (or at least

not discourage it), it is necessary to include checking optimizations in the

compiler. These optimizations are based on [Welsh78] which is, in turn, based
on [Suzuki77]. An extension must be made, since Ada permits arrays whose
bounds are unknown until execution time, while Pascal arrays all have
compiler-time bounds. [Fisher77] discusses run-time checking for Pascal; a
number of problems discussed there have been remedied in the design of Ada.

-The key to safely eliminating run-time checks is the use of range declarations
and flow to know when it is impossible for an exception to be raised. Some
cases are trivial. If the right side of an assignment is of the same type as
the left side, it is not necessary to generate a range check. Other cases are
more complex. [Welsh78 shows examples of using the range of a control
variable of a for statement to eliminate checks within the scope of the for

statement.

14.10 Register Allocation and Common Subexpression Elimination

Register allocation and common subexpression elimination are the
closely-related optimizations which are also important. Register allocation
may be viewed as a special case of the more general storage allocation
problem. Although registers must be allocated even in the absence of common
subexpression elimination, the problem is much more difficult when there are
common subexpressions. There are a number of approaches which can be taken
with regard to register allocation. For straight-line code optimal solutions
are known, provided common subexpressions are ignored. While these methods
are of theoretical interest, they are not really practical for the ?DS
compiler; complex expressions are relatively uncommon (Knuth7l] but common

subexpressions occur frequently [Lunde77].

14.11 Dead Code Elimination

Dead code elimination is an important optimization in Ada, since it is the
means for achieving conditional compilation. Dead code may also arise from a

call of a inline procedure with a constant parameter, or may be created due to

other optimizations. It may also arise if the code generator produces

suboptimal code sequences with the understanding that they will be cleaned up

by,& later optimizing pass. For example, it may be simpler for the code

generator to generate a branch over the else part of an if, even where the

then part is a goto.

96

JOVIAL/Ada Microprocessor Study Final Technical Report

14.12.Constant Arithmetic

Constant arithmetic is another important optimization, particularly in light
of the fact that Ad& allows programs to be parameterized by means of constant
declarations. (It should be noted that constant arithmetic refers to
compile-time constants, while constant declarations in Ada may declare objects
which are compile-time constant or perhaps constant only for a particular
invocation.)

It is desirable from the standpoint of program readability and adaptability to
encourage the use of named constants, rather than literals. In order to do
this, the compiler should not impose an execution-time penalty when such
constants are used.

Constant expressions may also arise due to the use of attributes or inline
procedures. It may be impossible f or the user to evaluate these expressions
and code their values in the source program. Therefore, the job must be done
by the compiler.

There are several places where constant arithmetic must be performed. The
language requires that certain expressions be evaluated at compile time.
These evaluations must be performed in the front end of the compiler. Other
expressions may not be known to be constant until optimization has been
performed. Examples of such expressions are those which become constant due
to folding.

14.13 Flow Analysis

There are a number of possible choices for a flow analysis algorithm. Various
methods for global flow analysis are described in the literature [Kilda1173,
Cocke70, Kennedy75, Wulf75, Loveman76]. It would also be possible to ignore
the problems of global flow analysis and worry about data flow within basic
blocks or on a regional basis. The method chosen is a compromise between the
fastest methods (which do not allow certain optimizations to be performed) and
thze most general (which can require large amounts of space and time during
compilation).

Ignoring data flow in loops (or more correctly, making worst case assumptions)
prevents loop optimizations such as the removal of loop invariant expressions
from within loops. Since large amounts of execution time tends to be spent in
small areas of a program (loops) [Knutb71], (inner) loop optimizations can
have a substantial influence on execution speed.

On the other hand, while a flow analysis method such as F-graphing [Loveman75]
is completely general (in the sense that exactly which definitions can reach

97

JOVIAL/Ada Microprocessor Study Final Technical Report

which uses for arbitrary program flow), the algorithms require large amounts
of time and space. Restricting program flow graphs to vell-structured
programs allows more efficient methods to be used [Wulf75, Geschke72], but at
the cost of some generality. Note that "spaghetti" code can still be compiled
- it just will not be optimized to as great an extent.

We feel that this is a reasonable choice for several reasons. First, Ada
provides control constructs which are sufficiently powerful so as to reduce
the need for goto statements. Conditional statements are somewhat more
general than in languages such as Algol, J73 or Pascal, with the addition of
or else" and "and then" as well as "elsif". Ada has a case statement, also.

The loop statement is sufficiently powerful so that most loops can be coded as
formal loop statements. The exit statement serves to eliminate the need for a
relatively common class of gotos.

It should be possible to extend the algorithms to handle special classes of
gotos (such as forward branches) at a moderate cost, should this become
necessary. The fact that Ada restricts the possible targets of gotos (e.g.
not out of a subroutine, nor into a loop) would make such an extension
easier. It is not anticipated that this will become a critical addition to
the compiler. Therefore, it is proposed that the flow analysis be done in the
more restricted form.

14.14 Compiler Structure

The compiler is divided into a machine-independent front end and a
machine-dependent back end. There are 16 logical phases which are packaged
into 9 memory loads as shown in the diagram below. The roles of the phases
are as follows:

LEX performs lexical analysis
SYNTAX performs syntactic analysis
RESOLVI performs preliminary resolution - builds a list of those names which

may potentially require resolution by package data
LIBIN brings in specifications from the library
RESOLVD resolves names in declarations
RESOLVE resolves names in executable statements
GENERICS instantiates generics. Note: RESOLVD, RESOLVE, and GENERICS operate

in parallel
SEMANTIC performs the remaining static semantic analysis
EXPAND expands the IL in a target-dependent manner
INTERPROC performs interprocedural analysis
FLOW performs flow analysis
OPT performs optimizations
ALLOCATE allocates variables

98

JOVIAL/Ada Microprocessor Study Final Technical Report

CODE generates code sequences
POST performs post-code-generation optimizations (including peephole

optimization)
ASH generates relocatable object or as-sembler input

Although they are considered part of the back end, INTERPROC, FLOW, and OPT
are machine-independent. EXPAND inserts machine-dependent information into
the IL so that these three phases can perform optimizations appropriate to the
target machine, without having knowledge of the target built into them. The
dashed lines indicate the optional (optimizer) ph.-a

99

4

E-4 1.4

0 CO $

t-44

0 0

o0 w a~Ia'

4J E) Z -4

-4 z

-4 0-4

C H

0

~z)
i >4

CO z

00

LO)CIL
Wp..

100

JOVIAL/Ada Microprocessor Study Final Technical Report

The compiler require& the specification of a source progra and library,
although the library may be defaulted. Facilities are provided for selection
of default versions and revisions of library units, but a particular version
or revision of a unit may be specified explicitly. The compiler generates no
listings; these are provided by separate tools.

p 101

JOVIAL/Ada Microprocessor Study Final Technical Report

15. LINKER

The linker combines relocatables to form executable programs or partially
linked modules. It facilitates the development of programs by different
programers or groups of programmers. It differs from more traditional
linkers in that it must support compilation order checking. In addition, the
linker makes use of the attributes of program library members in order to make
the linking process more automatic in situations where explicit
version/revision selection by the user is unnecessary.

The design goals of the linker are as follows:

1. It must support all Ada requirements, in particular, compilation order
checking.

2. It shall support the requirements of small to medium scale program
development efforts.

3. It shall help to automate the recompilation process, in the event that
compilation order errors are detected, but allow the user to maintain
sufficient control.

4. It shall be easy to use.
5. It shall be efficient.

The linker design is based largely on the CSC/SEA linker design for the AlE
(CSC Linker8l]. Most of the changes from that document are editorial in
nature. The major substantive change is the addition of a capability to
genernte a recompilation order list suitable for driving the recompilations.
The deletion of unused procedures from packages is now stated explicitly.

This chapter provides a general overview of the Linker and describes the
design tradeoffs during the Linker preliminary design. The design itself
appears in an accompanying volume.

15.1 Interfaces

Both the Ads compiler and the Linker will make use of a common relocatable
object formatting package for formatting the respective output object.

Some targets may require that a special target-dependent load object format be
produced. In this case a tool would be provided to transform the
target-independent load object to the target specific format.

All programs developed under the HDS must be linked before they can be
executed. Under user direction, either from the Link command or from a Link
directive text object, the Linker reads program library and member relocatable
objects produced by the Ada compiler, or produced by the Linker itself from a

102

JOVIAL/Ada Microprocessor Study Final Technical 3dport

prior partial link, and creates a single relocatable load object. The Linker
will interface with the database to access and update progra libraries and
relocatable objects. The linker records a description of the parameters of
the load object so that the CLI can perform type checking on parameters
whenever a load object is executed through the CLI invocation mechanism.

15.2 Capabilities

The explicit Linker requirements specified in the SOW, STONEMAN and the Ad&
Reference Manual are minimal.

The coon Linker functions ore an implied requirement of the Ada. language
because of the need to create programs from separate, independently compiled
compilation units. These Linker functions include the support of multiple
location counters, the resolution of external references and the relocation of
address references.

In addition, the concept of a program library is defined in Ada to ensure that
a program consisting of several independent compilation units will have the
same degree of type safety as the same program submitted as a single
compilation. The Compiler largely supports this compatibility requirement;
however, the Linker further satisfies this requirement by validating the
actual order of compilation of the objects in a link.

The fact that there are no external references in the conventional sense in
Ada means that it is not necessary to do resolution for user-defined names.
At compile time it is known which library unit contains the referenced object
or routine, since definitions can only he obtained from other units by means
of "with" and "separate" clauses. Thus, the compiler is able to inform the
linker which unit must be used to satisfy references. In the case that
multiple versions and revisions are allowed (as in the MDS), there is a set of
eligible library units, and there must be a means of selecting the correct
one. This is done in this design by allowing default versions and revisions
to he specified, and by allowing the user to instruct the linker to include a
specific version and revision of a particular unit. Explicit versions and
revisions need only be supplied to override the defaults; they are not
otherwise required.

Further, the Ada language specifies a required order of elaboration of library
units included in a program. The Linker satisfies this requirement by
creating an elaboration procedure for each load segment; this procedure
performs the required library unit elaboration in the proper order at
execution.

In addition, the definition of exception handling in [Ada Reference] implies

103

JOVIAL/Ada Microprocessor Study Final Technical Report

that the. linker perf orm a sort of "relocation" on exception codes.

Beyond these limited requirements the functions supplied by the lIDS Linker are
those that are required in a useful user-oriented programt development system
and that are available in some form in many comercial operating systems.

These functions are outlined below.

Partial Linking

To facilitate construction of large programs, it must be possible to link
portions of the program independently, form them into partial link objects,
and present them as input into a larger link activity. This idea is analogous
to independent subprogram compilation. To support this, the Linker will
construct linked objects in relocatable object format so that the Linker can
accept its output as input to a subsequent link. Furthermore, the user is
able to specify in partial linking' those external symbol definitions within
the link that are to be retained as external symbols, for resolution of
references from outside the link. This approach results in a far more
efficient use of the system resources by not requiring a total relink when
only a few compilation units within an overlay segment are recompiled.

Multilevel Overlay Structure

Many linkers support only simple tree-structure overlays. This is clearly not
sufficient for many large program organization efforts such as coand/control
systems or compilers. The HDS Linker supports this requirement by allowing
the specification of a multilevel overlay program structure through simple
linker directives.

As an example the following diagram pictures a simple two-level overlay
structure. Names to the left of the overlay legs are used to represent
segments, names to the right represent library units.

104

JOVIAL/Ada Microprocessor Study Final Technical Report

PX

PY

ROOT PZ

EXEC

Ipl1 PV PT

PRI AA P12 CC PR3 EE

BB DD FF

GG

PR PS
PIB

PilIA RH jJ

The link directives to build such a program are shown below:

ROOT SEGMENT
INCLUDE PX, PY, PZ, EXEC

PHI SEGMENT
INCLUDE PW, A, BB

FRIA SEGMENT
INCLUDE PR, HR

PRlB SEGMENT PIlA - overlay PHIA
INCLUDE PS, JJ, KK

PH2 SEGMENT PHI - overlay on PHI
INCLUDE PV, CC, DD

P13 SEGMENT PHI -- another overlay on PHI
INCLUDE PT, EE, FF, GG
END

Following the execution of these link directives, the following library units
will have been linked in the following order; PX, PT, PZ, EXEC, PU, AA, BB,
PR, R, PS, JJ, KR, PV, CC, DD, PT, RE, FF, GG.

105

JOVIAL/Ada Microprocessor Study Final Technical Report

Automatic Segment Fetching

In a program with an overlay structure it is necessary that the overlay
segments be loaded before they can be referenced. This-is supported by the
KDS Linker as follows. Every call to a procedure located in a lover level
overlay segment is replaced by an indirect call to a system routine that will
check to see if the referenced segment is loaded. If the segment is not
loaded, the referenced segment and any unloaded higher level segments will be
loaded before executing the procedure call. Once the procedure (or the
segment containing the procedure) has been loaded, the indirect reference will
be changed to point directly to the subject procedure.

This approach allows the program overlay structure to be modified without
requiring any source changes or any recompilations - only a new link is
needed.

Reap and Stack Space

For each target system a suitable default size and location will be defined
for the heap and stack space. Where the default is not adequate, the user may
specify the size or the allocation of heap and stack space and whether or not
the heap and stack space should share a common area or should be controlled
separately.

Library Unit Elaboration

The Ada language has specific requirements concerning the order of elaboration
of library units in the execution of a program.

The Linker must ensure that elaboration is performed f or all library units in
the program in the proper order. This is accomplished as follows.

Each compilation unit that requires specific elaboration has a callable
elaboration prologue generated as a procedure by the compiler in a standard
location in the code section of the object. For each object included in a
load segment, the Linker finds its elaboration prologues (if any) and includes
a call to it in an elaboration procedure for that segment at the start of the
code section for the segment.

The elaboration procedure consists of a set of calls, in the proper order, to
the elaboration prologues in the segment. When a segment is loaded, its
elaboration procedure can be executed to perform the elaboration of every
library unit in the segment.

106

JOVIAL/Ads Microprocessor Study Final Technical Report

Stub Generation

The Ada, Compiler produces a progra library unit specification for every "is
separate" procedure that identifies the procedure as being a stub. When the
Linker includes such a stub procedure, it is replaced with a dumy procedure
that simply returns. Optionally, the dummy stub procedure will raise a
SOURCEERROR exception.

Compilation Order Validation

The Linker will perform the final verification of the Ada requirements for
proper compilation order. All violations will be reported to the user
although they will not abort the link. A recompilation order list, suitable
for driving recompilations, will be produced.

Module Promotion

Where an object is referenced in two or more overlay segments of a program,
that object will be promoted to a higher level segment that is common to those
overlay segments and no others.

If an object is explicitly included in a segment with the INCLUDE directive,
that object will not be promoted out of the segment. This allows the user
total control over the program structure without relying on the linker
defaults for implicit library unit inclusion.

Boundary Alignment Module Placement

The user will be able to specify boundary alignment for any externally
relocatable element of the link such as an object or location counter. The
boundary alignment could be expressed as an absolute address or as some
function of the next available location, such as double-word alignment, next
byte, or next page. The user will be able to place objects in the linked
program in a particuliar order or allow the Linker to choose the order.

Linker Listings

The Linker itself will not produce listings. Rather, there will be separate
tools to produce user-oriented map and concordance listings from the debugging
tables. The map will show the allocation and the attributes of the various
program location counters and entry points for each object and segment in the
linked program. The concordance listing will show the referencing library

107

JOVIAL/Ada Microprocessor Study Final Technical Report

unit name, the referenced library unit name, and the referenced element name
for every external reference from a compilation unit. The order in which
these names are applied in the sort may be user-specified.

108

JOVIAL/Ada Microprocessor Study Final Technical Report

16. DEBUGGER

The debugger provides facilities for program debugging at the source level.
The debugger design presented here is based on the CSC/SEA Debugger for the
AIX [CSC Debugger]. The primary change is the insertion of the definition of
an "address". This definition appeared only in the Interim Technical Report

[CSC ITR]. Its omission led a number of reviewers to conclude that the
debugger required machine addresses and did not allow for source-level
debugging. In addition, an attempt has been made to make the syntax less
cryptic.

The MDS Debugger supports program developers by providing comprehensive

symbolic interactions with an executing Ada program. Facilities supported by
the Debugger are Ada data object examination and modification; controlled

execution in the form of single stepping, breakpointing and/or interrupting;
and monitoring and tracing of program execution. The Debugger performs its
function by direct execution of the subject process controlled by instruction
implants rather than by simulation.

The principles that influenced the design of the Debugger are:

1. The Debugger must allow the prograer to debug at the level the
program was developed, namely at the Ada source level.

2. The Debugger must support the checkout of operational, fully-optimized

programs.
3. The Debugger must be efficient and not require excessive memory or

processor resource usage.
4. The user need not anticipate the exirtence of program errors aid their

location in order to correct them effectively.
5. The Debugger must support the checkout of programs that utilize the

full Ada language including Ada tasking.
6. The Debugger must support the checkout of programs compiled for other

target computers and their checkout in both the host environment and
through use of simulators in the host environment.

7. The Debugger must support the location and correction of program

errors and the performance tuning and quality assurance aspects of

program development.

The following section provides a general overview of the Debugger interfaces
within the MAPSE and describes the design tradeoffs performed during the
Debugger preliminary design.

The Debugger is a functional part of the CLI and is invoked when a debugging
command is encountered in a CLI command stream. The Debugger operateR as part

of the CLI process and permits a user to control and monitor a child process

of the CLI by interacting with the Debugger through use of the Debugger

109

JOVIAL/Ada, Microprocessor Study Final Technical Report

directives.

The Debugger permits referencing of program identifiers through the use of Ada
Debugging Tables (ADTs) produced by the Compiler and included by the Linker in
the load object.

16.1 Relation to MDS

The debugger forms a part of the CLI. Thus, whenever debugging is in
progress, all CLI facilities are available. The debugger is intended to
operate in an address space separate from the program being tested. Of course
this can only be done on hosts which provide distinct address spaces.

16.2 Capabilities

The Debugger provides the user with the interactive facility to discover and
correct Ada program errors. The functions supported by the Debugger are
requested by directives entered through the standard input file (normally the
user's terminal). The Debugger controls the execution of the subject process
by entering instructions into the user's program as a result of user
requests. This debug process and the Debugger operate synchronously - with
execution of the debug process proceeding until an implant causes the Debugger
to take control. A facility exists to allow the debugger to gain control at
the point where an exception is raised in the test program, before an attempt
is made to find the test program's exception handler. This allows the user to
examine dynamic data before it is deallocated due to the invocation of the
exception handler. When the Debugger is in control, the user may examine or
set program variables, make procedure calls, enable execution traces, etc.,
and then resume execution of the process.

Ada Source Level Debugging

The Debugger directives and the Ada name referencing are expressed in Ada
syntax. All values whether expressed in a directive or displayed by the
Debugger will be represented according to type using Ada literal syntax.

Although the intent of the Debugger is oriented toward checkout to the extent
possible at the Ada Language level, circumstances are expected to arise where
machine-level observation is required. The Debugger supports this by
permitting access to individual instructions, actual addresses, single
stepping, instruction tracing and dumps. Even at this level, the Debugger
attempts to allow references and display values in as symbolic a manner as
possible.

110

JOVIAL/Ada Microprocessor Study Final Technical Report

Debugging Optimized Operational Programs

Although the Compiler supports an opt ion to suppress optimization, thus
ensuring the user of strict correlation of the source program to the executing
program, the Compiler and Debugger have been designed to permit the checkout
and correction of operational, optimized programs. The Compiler produces
detailed messages that describe the optimizations performed. The ADM. also
include descriptions of the optimizations performed with each statement. In
particular, the locations assigned to source and compiler-generated variables
by the allocation are recorded in the ADTs. The Debugger will then be able to
alert the user when debugging requests may be affected by optimization.

Resource Use

The ADTs that provide the Ada names and attributes are maintained in the load
object and do not occupy any memory until an Ada name is referenced. Only
small portions of the ADTs are required at a time, thus the memory impact of
symbolic name referencing is minimized.

No hooks are required in the code to support debugging. This eliminates the
problem of significant code expansion often associated with debugging.

To minimize performance impact on a program being debugged, direct execution
is utilized rather than interpretation. Execution is controlled by implanting
breakpoints into the program as required. Furthermore, the Debugger operates

* as a separate process to prevent the results of the program being debugged
from being affected unexpectedly.

Error Anticipation

Since error locations cannot be anticipated, the Debugger has been oriented to
debugging without hooks and without special preparation of the program for
execution. An operating program may be interrupted and debugged with the same
facilities as if it had been loaded and started by the Debugger.

Full Language Support

All language features are supported by the Debugger through directives;
however, the full Ada expression and statement capability is not provided
within the Debugger directives to eliminate the need for full interpretation
and the associated debugging performance penalty. The user may interface with
and monitor Ada task&. All Ada types are supported, all Ada program objects
may be referenced and examined, and most Ada operators may he used in Debugger

JOVIAL/Ada Microprocessor Study Final Technical Report

expressions.

Target Program Checkout

The Debugger is designed to permit checkout of programs compiled for target
computers being simulated an the host development computer as yell as programs
being directly executed on the host. The Debugger interfaces are fully
standarized; the fact that the program is executed through simulation is
transparent to the Debugger.

The Debugger also provides a mechanism to perform data recording and
environment simulation through the record directive. By the use of minimal
scaffoldigg and this record function, both static checkout and post data
reduction facilities are provided.

Timing and QA Considerations

An often neglected development requirement is an automated mechanism to
support program validation and refinement. Two features have been included as
an integral part of the Debugger to support this need. These features allow
the user to time individual program regions and count region entrances thereby
providing performance tuning data as well as ensuring that all program paths
have been exercised. The data required to support this facility is a fallout
of the compiler optimizer.

16.3 Sample Debupgini Session

The following Ada program and debugging session illustrates the use of the
directives.

I package trig is
2 type deg is integer range 0 .. 360;
3 type sc is float range -1.0 .. 1.0;
4 function sin(d:in deg) return sc;
5 pi: constant :- 3.14159;
6 end
7
8 package body trig is

9
10 function sin(d:in deg) return sc is
11 i: integer range l..20;
12 limit: integer : 2;
13 factor: float : pi*float(2)/180.0;

112

JOVIAL/Ada Microprocessor Study Final Technical Report

14 term: float : 1.0;
15 sin: float : 0.0;
16 begin - use Taylor series to compute sine
17 series: while i in 1 .. limit loop
18 term :- term*factor/float(i);
19 if i mod 2 - 0 then
20 term : -term;
21 else sin : sin + term;
22 end if;
23 return sin;
25 end sin;
26 end trig;

The directives below represent a sample debugging session (the comments on the
right are editorial notes). Debugger responses are underlined.

load trig -loads package trig
go -elaborates package
use trig -default name qualifier
sin (30) ? -compute expression
- 0.52359 -not very precise
insert trig.19; [i ?] -sin.i when encountered
insert #1 -lst insert
sin (30) ? -try again
trig.sin.i-l -1st loop iteration
trix.sin.i-2 --2nd loop iteration
- 0.52359 -still wrong of course
insert sin.series; [limit:-20] -series should have 20 terms
insert #2 --2nd insert
cancel 1 -disable 1st insert
sin (30) ? --one more time
-0.50001 -much better
quit --done, go correct source

113

JOVIAL/Ada Microprocessor Study Final Technical Report

16.4 Debugger Directives

The Debugger directives use a simple syntax with Ada symbols for Ada program

names, expressions, and values. In the directive descriptions Ada definitions

are used. A number of definitions allow an address to be specified. In the

directives below, Ada definitions are used. An address may be an Ada name,

and Ada program statement or a machine address. Its syntax is:

address ::- name I name.integer I integer I @ address

The formats for directives are summarized below:

load object-description [parameters...]

Used to prepare a program object for execution. The parameters

are specified using the CLI conventions.

goto [address) 1, (statements I instructions)
integer-expression]

Used to begin (or resume) execution. If the address is

omitted, execution will begin at the program entry point (or

resume where last interrupted). This directive may also be

used to execute a specified number of statements or

instructions.

help {action}

Used to obtain help information for the various debugger

commands.

use packagename {,package name}

This directive makes a name declared in a package referenceable
without the package qualifier.

expression ?

The directive computes and displays the value of the expression
or variable. Values displayed will be formatted according to

the expression type. When displaying a variable, applicable

indices or component names will be displayed.

variable'address ?

114

. .. i I I | °| I H I '- . _= ._ . .. -

JOVIAL/Ada Microprocessor Study Final Technical Report

Used to print the address of a variable.

variablename :- expression

This directive is used to set a variable to the value of the
expression.

trace [,(proc I flow I statement I assembly I walkback I off)]
[address]

Used to trace execution of the program. The options (which may
be abbreviated by their first letter) are p for subprograms, f
for flow paths (sequences of statements uninterrupted by flow
control semantics), s for statements, a for assembly language
level, w for subprogram walkback, and o for turning off
indicated traces. The address is the limiting address of the
traces.

dump [,(integer I real I boolean I binary I octal I hex I character I
enumeration I assembly I status)] address-range

Dumps the address range specified in the format requested:
integer, real, Boolean, octal, hex, character, assembly
instructions, hardware status.

(flow I time!,(proc I flow I report)] subprogram-name {,subprogram name)

Causes path entrance frequency or timing information to be
collected for the subprogram (or at the flow path level). The
r option produces a sunwary report of the collected
information.

insert (address; j directive {;directive} I) I ?

Effectively inserts the directives at the indicated program
address. If the operand is ?, the active inserts are
displayed.

handle (exception-name {, exception-name } j directive {;directive} I

Effectively inserts the directives at the point where the
exception is raised. If the operand is ?, the exceptions which
the debugger is intercepting, and the exception which is being
raised, if any, are displayed.

115

JOVIAL/Ada Microprocessor Study Final Technical Report

cancel implantname {, implantname }

Cancels a previous insert or handle.

record t, (read I write)] file , variable { , variable }

Used to write a variable to a file or to read a value into a
variable. May be used to support environment simulation or
post data reduction.

print textobject [linerange]

Used to list text objects such as Ads progr m source. By
executing the Editor, the user may browse through his source
program or enter his modification as debugging proceeds.

stop [,(status I walkback)] [expression]

Stops execution, displays execution status, active procedure
call chain, and, on option, the value of expression.

quit

Terminates Debugger commands and returns to CLI.

In addition, Ads raise, abort, and delay statements may be used as directives.

116

JOVIAL/Ada Microprocessor Study Final Technical Report

17. TEXT EDITOR

The MDS text editor provides the ability to create and modify text files.
Since the HDS will only be expected to support a limited number of users, it
is reasonable to assume the availability of high-speed VDTs for editing. This
is as opposed to the AIE, which needs the capability for editing by remote
users over low-speed lines.

The editor design presented here is based largely on the CSC/SEA text
editor. The primary difference is that the MDS editor was not constrained to
provide support for low-speed or hard-copy terminals. There have also been
some editorial changes to correct some typographical errors which appeared'in
the AIE version.

The design goils for this editor, aside from providing the basic editing
facilities were:

1. The editor should be easy to use.

2. The commands must be natural, easy to learn and remember, but powerful
and flexible.

3. The editor should provide screen-oriented editing facilities.

4. The editor should be as portable as is practical.

5. Support should be provided for minimal word processing and
documentation generation.

There are a number of text processing systems available on microprocessors.
In a number of cases the microprocessor-based text editors are easier to use
than the editors which are hosted on larger systems. The text editor is a
tool which is likely to be even more effective on a microprocessor based
system than on a large host system, due to the fact that it is possible to
assume the existence of high-speed VDTs for the MDS, while it is not always
possible to do so for a large host.

For the purpose of the basic MDS we ruled out some of the more exotic forms of
editors, such as syntax-directed editors [Morris8l, Teitelbaum81] or editors
which require special hardware such as touch panels or mice [Wadlowvl]. There
is no reason why these other types of editors could not be added to an MDS
system; they just did not seem appropriate for the basic system.

This editor design has been influenced by a number of sources:

I. CSC/SEA AIE Editor- This was the largest single influence.

117

JOVIAL/Ada Microprocessor Study Final Technical Report

2. Intermetrics AIE Editor- This editor had an influence on the
screen-oriented commands.

3. UCSD Pascal- This editor had an influence with respect to
screen-oriented editing, environment specification and automatic
indenting.

4. SOS- This editor had an influence on the line-range-oriented command.

5. Wordstar- This is a CP/M based word processing system. Its influence
was in the area of screen-oriented editing.

6. CSTS Editor- This CSC editor has a somewhat unnatural syntax but
permits a list of disjoint ranges, provides a means of referencing
lines by means of fractional keys, and allows vertical windows in
lines.

7. GCOS- This editor allows the ability to express a long, complex string
with a simpler string range syntax.

8. TECO (Several Versions)- TECO provides basic editing facilities plus
mechanism for combining commands in user-defined macros.

9. Jovial Users Group (JUG) AIE reviews- These comments pointed out a
number of deficiencies in the original AIE document.

An editor is vital to program development, because it provides a means for
creating source programs, and data and documentation files. The editor is,
however, perhaps the most easily replaceable tool in the system since it is
relatively simple compared to tools such as compilers and since its interfaces
are simple - it must read and write standard text files. It is also one of
the most controversial tools. (Witness the letters to the editor in [CACM
24:6, June 811 in response to [Ledgard80].)

The editor design presented here is by no means a minimal text editor.
However, any system which can support an Ada compiler should have-no trouble
supporting the editor. There are a number of features in the editor design.
Those that are most noteworthy and their reasons for being are discussed here.

One important feature of the MDS editor (or more properly, of the MDS systm)
is that lines in text files may be referred to by line numbers. This provides
a static means of referencing lines in the editor, compiler and debugger. It
also provides a convenient way to describe minor source changes for release to
different systems when the changes are not large enough in scope to warrant an
entire new system.

118

JOVIAL/Ada Microprocessor Study Final Technical Report

The editor is primarily screen-oriented, but contains non-screen-oriented
commands to facilitate its use through command files, and to make it easier to
make wholesale, systematic changes to a text object. The normal mode of
operation is insert mode, where printable characters are entered in the file
when they are typed, but where certain commands such as cursor movement and
character, word and line deletion are available. Exchange mode allows
characters to be typed in, replacing the text at the current cursor position.
There is also a command mode which allows non-screen oriented commands to be
entered.

The syntax of editor commands is a rather controversial subject. Options
include menu selection, clear but verbose commands, concise but cryptic
commands, or a combination of these approaches. There have been a number of
studies of the effect of different styles of editors on productivity
[Ledgard80, Roberts79, Robertson8l, Schneiderman80, Card80]. Since it has been
shown that the speed at which editing tasks are performed by experienced users
is related to the number of keystrokes required tCard80], we have attempted to
design a syntax which requires a minimum of keystrokes for common operations.
For less common operations such as copies, reads, and writes, we have added
some noise characters for increased clarity.

One of the more innovative features of the editor is the interface with the
Ada compiler. The compiler generates error messages in a form suitable for
processing by the editor. When the compilation error flag is set using the
environment command, error messages are displayed along with the text. The
editor also contains a facility for advancing the cursor to the next (or
previous) line on which an error was detected.

Another editor feature is the buffer. Buffers may hold small amounts of text
or entire text objects. They allow multiple files to be edited
simultaneously, facilitating the mo'iement of text from one database object to
another.

Control constructs are provided so that editor commands may be executed
repetitively or conditionally.

A macro facility is provided so that commonly used operation sequences may be
performed with a minimum of keystrokes. An escape sequence provides access to
the parameters which were passed to the macro. Macros are defined using the
normal buffer manipulation commands to enter the text of the macro into a
buffer.

The editor allows commands to be executed from an initialization file when the
editor is first invoked. This allows a standard environent to be set up and
provides a painless method for making standard macros available. These macros
may be defined directly by commands in the initialization file, or the

119

JOVIAL/Afa Microprocessor Study Final Technical Report

initialization file may cause Chem to be read in from the database.

The editor is intended to be used primarily in screen mode; changes made to
the work buffer are reflected instantaneously on the screen. The editor has
several sub-modes of screen mode. In insert mode printable characters are
entered into the work buffer at the current cursor position. In exchange mode
printable characters replace the characters at the current cursor position.
Mark mode allows a portion of the work buffer to be marked so that it can be
treated as a unit by various command mode commands. In any of these modes it
is possible to use the comands for moving the cursor, deleting text, changing
the case of characters or swapping character positions, as well as searching
forward or backward for strings.

There are three types of editing which are accomodated in the editor: program
development, document preparation, and picture generation. These have many

characteristics in common, but also require some special features.

Line numbers are useful primarily for program development. Screen-oriented
commands can be made to act on lines of text. There is also the ability to
act on a statement (text up to the next. semicolon).

Operations applied to words and sentences are useful primarily for document
preparation. Case changing operations fall into this category also. A novel
feature of this editor is the ability to refer to a rectangular piece of text
in a rangelist. This allows tables to be more easily manipulated. For
example, it is possible to change a table fromi two columns wide to a single
column simply by moving the text in one column in a single instruction.

It is sometimes desirable to be able to create pictures with an editor, for
instance, in producing a document. This editor has a special feature to
facilitate this. It is possible to define a current direction for the cursor
to move when a key is typed. To produce a box, for example, it would be
possible to set the direction to up or down to create the sides of the box
simply by typing vertical lines.

120

JOVIAL/Ada Microprocessor Study Final Technical Report

Since the screen-oriented commands are difficult to illustrate on paper, the
examples shown below are of the non-screen-oriented commands.

F Find

Find a string

FABC/ Find the first occurence of the string "ABC searching
from the current position to the end of the work
buffer.

-FALPHA/ Find the string "ALPRA" searching backward from the
current position to beginning of the work buffer.

FBETA/300..500 Find the first "BETA" in lines 300 thru 500
inclusive.

F/ Find the most recent search string searching from the
current position to the end of the work buffer.

D Delete

Delete text

D 100 Delete line 100

Dl0O..200 Delete lines 100 thru 200 inclusively

D320#11..15 Delete characters eleven thru fifteen inclusively on
line 320.

D61,37,43 Delete lines 61, 37 and 43.

3D Delete three lines starting at the current line.

IDt Delete the distinguished Zone.

121

JOVIAL/Ada Microprocessor Study Final Technical Report

S Substitute

Substitute for string-I string-2

SABCIDEFG/200 In line 200 substitute for all occurences of the
string "ABC", the string "DEFG".

SALPHA/BETA/ Substitute for the next occurence of the string

"ALPHA", the string "BETA".

SXYZ// Delete the next occurence of "IYZ".

SABC/DEF/\>GHI/..\<JKL/ Substitute "DEF" for each "ABC" betveen the
next occurence of "GHI" and "JKL".

C Copy

Copy text to a position, the source text is not deleted.

C30..60 Copy lines 30 thru 60 inclusive to the current
position.

C200..250,100 TO 710 Copy lines 200 thru 250 and 100 inclusive to the
position immediately after line 710. If line 710 does
not exist the first line copied is given line number
710.

C* Copy the distinguished zone to the current position.

C\BP Copy the text described by the range contained in

buffer P to the current position.

M Move

Move text to a position, delete the source text.

M55 Move line 55 to the current position.

122

--_ .- ,. ,

JOVIAL/Ada Microprocessor Study Final Technical Report

M10,333,111 Move lines 10,333 and 111 to the current position.

M* Move the distinguished zone to the current position.

For the following example assume that the work buffer contains:

1000 1 4
1100 2 5
1200 3 6

Then the command:

M1000..1200#3 TO 1300

would give the result:

1000 1
1100 2
1200 3
1300 4
1400 5
1500 6

Insert

Insert text at the current cursor position.

In this example text typed by the editor is underlined, <CR> represents
carriage return, and < represents backspace.

500;1<CR>
500 if A B
600 C: D;
700 E F;
800 <<<end if;/

Note the auto-indenting in lines 700 and 800, and how in line 800, the
user backspaced to get rid of the supplied blanks.

N Number

123

.... i

JOVIAL/Ada Microprocessor Study Final Technical Report

Number a range of lines.

N re-Number the whole work buffer with current initial
number and current increment.

NI0O..200,1I0,5 re-Number lines 100 thru 200 inclusive, start
numbering at 110 in increments of 5.

R Read

Read (a portion of) an Ada Object into the work buffer, only text objects
may be read.

RDEVTAB/ Read the contents of text object DEVTAB into the
current position.

RTASKTT/O..99 Read the text between lines 0 and 99 inclusive from
text object TASKIT into the current position.
Neither line 0 nor line 99 need exist.

R\B1 Read the file or buffer named by the string
contained in buffer 1 into the current position. If
the buffer I contained the seven character string
"DEVTAB", this command would be the same as the
first example above.

W Write

Write (a portion of) the current work buffer to a text object. If the
text object is not empty, the output will be appended to the object.

WTPTA/ Write the work buffer to TPT_A.

WTQAA/5,100..200,13 Write lines 5, 100 thru 200 inclusive and line 13 to
TQMA.

124

JOVIAL/Ada Microprocessor Study Final Technical Report

B Buffer

Switch the current work buffer to a specified buffer.

BA Switch to buffer A. The text in buffer A acts as the
current work buffer.

B<CR> Switch back to the default work buffer.

Position Cursor

Position the cursor to a specified location.

100 Cursor set to line 100.

P Print Text

Print specified text

P200 Print line 200.

P400..415 Print lines 400 thru 415.

A Assignment

Assign a value to a buffer

AI\BI+I Increment the value contained in buffer I.

E Environment

Set/list environmental parameter

125

JOVIAL/Ada Microprocessor Study Final Technical Report

ESfill/I/ Turn line filling on.

126

JOVIAL/Ada Microprocessor Study Final Technical Report

18. OTHER TOOLS

An actual MDS installation is likely to have numerous tools beyond the ones
described in this report. The tools discussed in this chapter are those which
are necessary to implement the MDS, are of such general use so as to be worthy
of inclusion in the basic MDS toolkit, or are tools which are closely related
to the Ada Programming Support Environment.

18.1 MDS support tools

LALRGEN-parser generator

LALRGEN;

Since the compiler specification calls for a LALR parser, it is necessary to
have a LALR parser generator for compiler maintenance. TIis tool would only
be required on systems on which the compiler was maintained, but could
certainly be used for other parsing applications even on systems where
compiler maintenance was not performed.

LALRGEN's input is a text object containing the grammar for which tables are
to be constructed. The output is a text object containing tables suitable for
inclusion into the skeleton parser.

18.2 Additional MDS tools

The tools described in this section are those which are not quite so basic as
the compiler, linker or editor, but which are important enough enough to be
included in the basic MDS toolkit.

18.2.1 COMLIST - generates compilation listings

COMLIST (includes : boolean :- true;
notes: boolean :- true;
errors : boolean :- false),

COMLIST generates compilation listings from a source file (plus include
files) and the error file generated by the compiler. Several listing options
are available.

INCLUDES - if this flag is true, the text from objects named in include
pragmas is listed.

NOTES - if this flag is true, notes are printed; otherwise, only

127

JOVIAL/Ada Microprocessor Study Final Technical Report

messages of level warning or higher appear on the listing.
ERRORS - if this flag is true, only lines containing errors are

printed.

18.2.2 XREF - cross reference generator

XREF generates a cross reference listing from the debugging tables which are
stored in the program library.

18.2.3 COMPARE - object comparison

COMPARE (filel: filename; file2: filename);

COMPARE generates a listing of the differences between two text objects on the
standard output file. There is no standard input file.

18.2.4 ILLIST - IL prettyprinter

IL LIST (structure: boolean :- false);

The IL lister converts the IL to a readable format: standard Diana format or a
readable representation of the actual IL format. The library IL file is the
standard input; the readable IL is written to standard output.

STRUCTURE - if this flag is true, the actual structure of the IL is
printed; otherwise, it is printed as described in [Diana8l].

18.2.5 FORMAT - text formatter

Text formatters are useful for preparing documentation. There is no doubt
that microcomputers can host such tools. This document was prepared using a
formatter which is an extension of the one described in [Kernighan76]. That
formatter was, in turn, loosely based on Runoff [Saltzer65]. These formatters
require the use of a text editor to create a file containing text and
formatting commands. That file is run through the formatter to produce the
document. This style typically uses a special character at the start of a
line which contains commands. A variation on this is described in
[Barach80]. Files for submission to thib formatter more closely resemble the
final document than do the files required by the formatter which was used for
this report.

Another style of formatter is that which is commonly found on word processing
systems where the text editor and formatter are a single program. Commonly,

1 28

JOVIAL/Ada Microprocessor Study Final Technical Report

the text is always displayed in formatted form; the user never sees the
commands themselves, only their effects. Two examples of such formatters
which are currently available on microcomputers are Wordstar [Micropro8O] and
Magic Wand.

Any of these styles of text formatters could be used with the MDS.

I
~129

JOVIAL/Ada Microprocessor Study Final Technical Report

19. Performance Estimates

In order to predict tbe performance of a compiler on a new system, it is
helpful to have the result of baseline compilations, and a measure of the
relative speeds of the machine on which the baseline runs were made, and the
machine whose performance is to be predicted. As was mentioned previously,
compilation statistics have been obtained for J73/I and J73 compilers on
various models of the IBM 370 and DEC-10. In addition, figures were obtained
for several Pascal compilers running on a Z80-based microcomputer.

In order to determine the relative speeds of the large hosts and a number of
microprocessors, "compiler Gibson mix" figures [Bloom74] were computed for the
various machines. There are various instruction mixes which have been used to
compute relative machine speeds [Bell78]. Commonly used measures of machine
speeds are kilo operations per second (KOPS), million instructions per second
(MIPS) and Whetstones [Curnow76]. The difficulty with such measures is that
the relative power of different machines may vary depending upon the
constituents of the job mix. Additionally, if the instruction mix which is
used to determine the performance index does not accurately reflect the use to
which the machine will be put, the performance index can be misleading. In an
attempt to produce an accurate indication of how suitable the current
microprocessors are for hosting compilers, several different methods of
computing relative machine merits were used.

19.1 Compiler "Gibson Mix" from [Bloom74]

The "compiler Gibson mix" used here is based on a procedure described in
[Bloom74] allowing for the differences in hosts when evaluating compiler
performance. Our aim was to make use of the inverse relationship: if the
compiler is held constant, what will its performance be on various host
computers? The original "compiler Gibson mix" procedure involved
hand-generating code sequences for the various host computers, calculating a
weighted average for the various types of statements, and computing the
averages for those types of statements (ifs and fors) whose averages depended
on the overall average. The weights used for the various statements depended
on the frequency with which those statements appeared in several actual
compilers. Thus, a statement which was of a commonly occurring form (such as
X - 0) would have a higher weight than a rarer type. Given that the weights
accurately reflect the composition of the actual compiler, the relative
performance index would be more accurate than that obtained using figures such
as clock speed or add times for comparisons.

There are a number of shortcomings in the original "compiler Gibson mix". An
attempt was made to correct the most significant weaknesses for the purposes
of this study. Those deficiencies noted are:

130

JOVIAL/Ada Microprocessor Study Final Technical Report

1. For some machines and repetition counts f or loop executions, numbers
which represent contraditions are obtained.

2. The method which was used to measure the frequency of execution of the
various statement types, ignored loops which did not include
subroutine calls.

3. Subscripting and based data are ignored.

4. No allowance was made for the relative scope in which operands were

defined.

5. The data types of operands were largely ignored. There were no
character tests and no part-word extracts or deposits.

6. No allowance was made for input/output parameters.

7. No allowance was made for the effects of the architecture on a global
basis.

The original compiler Gibson mix obtained figures for dynamic statement
execution based on the static occurrence of the various statement types. The
static frequency of occurrences of the different types of statements following
thens, elses and dos was noted and used to produce equations which purported
to reflect the dynamic execution frequency of the statements. As an example,
the raw equation for the average execution time for a statement is based on
the product of the number of times the average for loop is executed and the
average time per statement. Thus, the average times for for statements, for
if statements and for all statements depend on each other.

The authors of [Bloom74I suggest obtaining these three values by solving
simultaneous equations. When this was done, however, negative values for the
times were obtained. Obviously, this indicates that the model does not give
good results, since negative average times are meaningless. The apparent
reason for this is that divergent infinite series are being summed. This is
due to the fact that if the repetition count for for loops is sufficiently
large, the time for inner loops is sufficiently great that, despite the fact
that only one statement in 50 is a for loop, the time contributed to the
average by a for increases as the nesting level increases.

The problem stems from the fact that static statistics were used as the basis
for dynamic statistics. Our solution to this problem was to observe that in
the limiting cases, the statements in loops are never executed (r - 0) or the
statements in loops are executed so many times that any statements not in
loops are executed with such a low relative frequency that ',key are

131

JOVIAL/Ada Microprocessor Study Final Technical Report

insignificant. Thus, at the tvo extremes, the frequencies of executions for
the various kinds of statements should approach the frequencies for statements
outside loops and inside loops, respectively. The averages were calculated
using both of these sets of weights. It was not expected that the two sets of
averages should show any significant differences, and in fact, this turned out
to be the case.

It should be noted that this means of determining dynamic frequency of
execution is approximate, at best. A more satisfactory method would be to
compile statistics dynamically from execution frequency histograms. The raw
data for such computations were not available, so the static data were used as
a compromise. Using dynamically acquired data would give a better picture of
the actual frequency of execution, provided that the statistics were obtained
using good benchmark data.

Subscripting and basing of data were ignored in the original compiler Gibson
mix. Since the original statistics did not include a measure of the frequency
of the occurrence of these operations, the performance indices were originally
calculated assuming the absence of subscripting and a correction factor was
added in later. The weight of this correction factor was based on the
frequncy of subscripting operations which were observed in J73 compilers as
part of this study rather than those compilers which were analyzed in
[Bloom74]. Note that the architecture has an effect beyond that of the time
for a single indexing operation, since, for some machines which do not allow
data to be based and indexed, an additional add instruction must be generated.

The mix did not take the scope of operands into account. This is probably not
a serious deficiency, since other studies (Wirth7l] have shown that the
majority of references are to data that is either local or global.

The data types for operands were ignored for the most part. The mix deals
exclusively with integers and booleans, and booleans appear only in if
statements. Character data and floating point data do not appear in the mix.
The absence of floating point operations is quite plausible, since compilers
typically use floating point operations only for performing constant
arithmetic. Therefore, both their static and dynamic frequencies of
occurrences should be insignificant. The omission of character data is more
questionable. Although the static frequency of occurrences of character
operands is low (since character data is involved primarily with reading
source and generating listings and these functions tend to be isolated), the
dynamic occurrence frequency may be quite high in some cases [Earnest7O].

Another problem with operand data types is that no figures were included for
the occurrences of part word operands. These may occur quite often if a
packed symbol table structure is used.

132

JOVIAL/Ada Microprocessor Study Final Technical Report

There vas no allowance made for the occurrences of input and output
parameters. All the parameters in the mix were input parameters. This should
not be a very significant factor. Since no statistics were available, no
correction was attempted.

Another deficiency, and one which would be very hard to remedy, is that there
is no allowance for the effect of the different machine architectures on a
global basis. There is no real advantage in the mix for a machine to have a
number of registers. In order for the effects of such machine features to be
measured, it would be necessary to have such information as the number of
coon subexpressions live at a given time. Other machine features, such as
short branch instructions or skips, have an effect which can be approximated
by making some reasonable assumptions based on empirical data LPeuto77].

There are a number of statistics which would be useful in more accurately
characterizing JOVIAL usage. For a comprehensive list see [Greenspan8O].

19.2 "Gibson Mix" Calculation

A number of assumptions were made in computing the performance indices for the
various computers. These assumptions are given here:

1. Code must be recursive and reentrant. (This is a result of the Ada
requirement that procedures be recursive and reentrant.)

2. Operands are local (or global) and the appropriate pointer is
available without loading.

3. Local variables are few in number (< 256 address units). Short
addressing forms are used, if available.

4. Conditional branches are relatively short (but not very short). Short
relative branches are used but skips are only used in "canned" code
sequences.

5. Short code sequences are better than fast code sequences, except that
subroutine calls are avoided.

6. it must be possible for a production quality compiler to generate the
code sequences.

7. Parameters are passed on the stack.

8. Register saving and restoring is ignored, except for environmental

pointers.

133

JOVIAL/Ada Microprocessor Study Final Technical Report

The code sequences generated for the mix are both recursive and reentrant
because Ada requires that procedures possess these attributes. This is not a
requirement for all J73 procedures (although it may optionally be specified).
It was thought that the Ada requirements are more important.

The effect of this particular requirement is relatively insignificant except
with respect to the Z80 and the IBM 370. The Z80 is not well-suited to such
operations, since not all instructions may be indexed. In particular, the
lack of 16 hit indexed load instructions makes the performance of the Z80
worse, relative to the other machines, than if the code were not required to
be reentrant. It should be noted that the 8080 would fare worse than the Z80
due to this requirement. The 370, on the other hand, allows many instructions
to be both based and indexed; its performance is better, relative to the other
machines, than if this requirement were dropped.

The assumption that the local and global scope pointers are available means
that the pointers are in registers for machines which have them, and available
implicitly for the P-machine, which has no registers. None of the
architectures which were studied had trouble meeting this requirement,
although the 8080 would have had some difficulty due to the fact that the HL
register is the only index-like register on the machine, except for certain
special cases. (The BC and DE pairs may be used to address memory to load or
store the accumulator, but only HL may be used to hold the address for
arithmetic operands.)

The assumption that most branches are short is a reasonable one [Peuto77J.
The only short branch with a range smaller than 128 bytes in the architectures
studied is the DEC-10 skip. It was thought that i.t was unreasonable to use
skips, except for "canned" code sequences (e.g., where it was known that a
branch instruction followed the skip). In certain other cases it would be
possible to achieve optimization (e.g., IF condition THEN statement, where
"istatement" happens to require one word of code) but it was thought that the
effect of this sort of optimization would be quite small, relative to the
precision of the performance indices.

Where a tradeoff had to be made between code sequences, the shorter of the two
was chosen, the rationale being that shorter sequences always save space but
faster sequences only save time when they are executed [Wulf75J. The
exception to this rule was that sequences for all of the statements (except
f or call statements themselves) were generated inline. This was done because
the intention was to measure the suitability of the machines for hosting a
compiler, rather than the machines' efficiency for subroutine calls. The only
machine for which this had much effect was the Z80, since the other machines
had sufficiently powerful instruction sets so that it would be natural to
generate the code in-line.

134

JOVIAL/Ada Microprocessor Study Final Technical Report

It is assumed that the compiler vould be self-compiling. While it would be
possible to achieve some savings by coding the compiler in assembly language,
the increase in development costs, particularly considering the size of Ada,
would be prohibitive. Thus, it would not be meaningful to use code sequences
which could not be generated by a production quality compiler. The only
sequences which would not be generated by a compiler such as the SEA J73
compiler are the for loop sequences. These sequences dedicate a register for
the loop variable, whereas the SEA J73 compiler does not perform such
optimization, although it is well within the state of the art.

In order to simplify the computation of the mix, it vas assumed that
parameters would be passed on the stack, except for those machines (the 370
and the 1750A) which had no stack support. The call statements and prologues
give the greatest freedom for varying code sequences, parameters in the stack,
list parameters, or registers. A complete analysis of the best method for
each machine would have taken too much time so the stack method for parameter
passing was chosen as an expedient.

Procedure prologues and epilogues for general register machines normally
include code to save and restore register contents. This saving and restoring
was ignored for the purpose of computing the performance indices. One reason
is that it was not really possible to take the registers into account with
respect to common subexpression elimination. It would be unfair to penalize a
register machine for having a place to save common subexpressions by including
save and restore code without rewarding it when the subexpressions were used.

The method of computation of the performance indices was as follows:

1. Hand-generate code sequences for 65 types of statements for each

machine architecture.

2. Tally the time and space costs for each statement. Timings for the
P-machine were done experimentally. Space and the remainder of the
times were calculated from the vendor's hardware manuals.

3. Weighted averages were computed for each class of statements
(assignments, ifs, etc).

4. The overall performance indices were calculated, using weighted
averages of the averages for different statements. Weights were taken
from [Bloom74J and from Appendix I of this report.

Results obtained using the Bloom mix and the mix from Appendix I are almost
identical, which is not surprising since the percentages of different
statements are quite similar. Another study IShimasaki80] presented statement
mix results for various Pascal compilers. There the percentage of calls was

135

JOVIAL/Ada Microprocessor Study Final Technical Report

higher and the percentages of ifs and assignments were lower. A summary of
results of studies of the characteristics of high-level language progrms may
be found in (Softech8Ol.

The performance indices for the microprocessors were calculated in terms of
clock cycles, since most of processors are available with several clock
speeds. In addition, faster models of the same microprocessors may be
introduced in the future.

Cycle counts may be converted to speeds by dividing by clock frequency. Thus,
for an 8 MHz MC68000, the 43 cycles would represent 5.4 microseconds, but for
an 4 MHz microprocessor, it would represent 10.8 microseconds.

19.3 Compiler Performance Estimates

The theoretical machine speeds in Appendix H and the benchmark execution times
in Appendix J indicate that the more powerful microprocessors are comparable
to some of the slower models of the DEC-10, at least with respect to CPU
speed. KOPS figures obtained from various sources also indicate this to be
true. The DIS is rated at 350 KOPS (4 MHz) or 525 KOPS (6 MHz) [General
Dynamics80] and various models of the DEC-10 are rated at 166 KOPS (KA10), 497
KOPS (KIl0), and 829 KOPS (KLIO) [Lias80]. These figures do not, though, take
the differences in word size into account. Thus, in projecting the
performance of a microcomputer-hosted compiler, it is not sufficient to
compute a ratio of machine "horsepower" to use as a multiplier. Benchmark
results and mix figures do provide a place to start, however.

The 68000, on which the benchmarks were run, falls somewhere between the KAl0
and KIl0 with respect to CPU speed. Assuming that the effective speed of the
68000 was 4 MHz due to bus speed limitations, the 68000 is between these two
DEC-10 models in theory, also. Compilation speeds ranged between 850 and 1250
lines/minute on the KAI0 and 2000 to 2900 on the KIlO.

It should be noted that compilation speeds for languages such as JOVIAL and
Ada are less meaningful than figures for other languages due to language
features, such as compools and packages, which can require great amounts of
processing for few source lines. The estimates made here assume "normal" use
of compools or packages, as well as reasonable formatting conventions (such as
statements/line, and comments/statement).

The figures in Appendices A and K indicate that the bulk of the I/0 performed
while the J73 compiler is executing, is that required to read in the compiler
itself. The compiler phases are in the neighborhood of 300K bytes, but the
size of intermediate files (such as IL) is in the 64K range even for large
modules. This indicates that a reasonable approximation of compilation speed

136

JOVIAL/Ada Microprocessor Study Final Technical Report

may be obtained by dividing the number of lines compiled by the sum of the CPU
time and I/O time. Note that this applies only to a particular compilation
strategy, one in which most of the I/O cannot be overlapped vith computation.
In addition, a virtual memory strategy f or the symbol table could
significantly increase the amount of I/O required. This would invalidate the
assumption that most of the I/O was due to phase loading.

The KAlO speeds are the best place to start for calculating compilation speeds
for a 68000 hosted compiler, since the raw machine speed for the KAlO is
somewhat slower than that of the 68000. This allows for the fact that there
are some differences in wordaize. (The 68000 allows most operations to be
performed on 32 bit operands but lacks some 32 bit operations such as
multiplication and division.)

Although there are twice as many phases in the proposed Ada compiler as in the
SEA J73 compiler, the individual phases are not as complex. Although Ada
requires more processing than J73 (primarily due to the more complicated
visibility and overloading resolution rules), the compilation rates should be
comparable, because the J73 compiler provided additional facilities which are
in separate M4DS tools. For the purposes of this analysis we will assume that
a 1000 line module is being compiled. This would require about a minute of
CPU time on a KAlO, based on the figures in Appendix D.

The I/0 required for the Ada compiler is greater than that for the J73
compiler for several reasons. First, the compiler has more phases, so the IL
must be read and written more times. Second, the symbol table is not
memory-resident. Third, the Ada IL (DIANA) contains more information than
does the J73 IL. (This is partially, but not totally, due to the fact that
Diana contains information comparable to that in the J73 symbol table, as well
as the IL.) Statistics from the University of Karlsruhe indicate that their
compiler generates 3-5 IL nodes/lines of source and that the average node
contains 30-40 bytes. These figures are for the Aida IL, but should be a good
approximation for Diana, since Diana is a descendant of Aida and the two are
quite similar. For our thousand line module, the IL size would be in the
vicinity of 90,000-200,000 bytes. The University of Karlsruhe Compiler
distributed the attribute information in the terminal nodes, rather than
having small nodes which pointed to a symbol table type structure. This was
done to maximize locality (and minimize page faults) on a host with virtual
memory. This is not advantageous for current microcomputer architectures, so
the compiler design presented here does use a symbol table. This implies that
the actual size of the IL should be somewhat smaller.

Equivalent estimates for the 373 IL and symbol table sizes for a thousand line
module based on figures in Appendix K are 14,000 bytes (14 bytes/statements *
1000 lines) of IL and 16,000 bytes of symbol table for a total of 30,000
bytes. The figures in Appendix K give bytes of IL per statement (excluding

137

JOVIAL/Ada Microprocessor Study Final Technical Report

declarations). The calculation made here uses that figure multiplied by the
total number of lines, since IL is generated for declarations as well as the
normal procedural statements. These figures are exclusive of names (which
won't appear in all versions of the IL) and serve as a sort of lower bound on
the amount of IL to be generated, since Ada would be likely to require more IL
than J73.

The IL (and AST) are read and written a total of 14 times (7 reads, 7 writes)
by the proposed compiler. Assuming 100,000 bytes of IL, this represents
1,400,000 bytes read and written. In addition, there are 9 memory loads of
roughly 100,000 bytes each for another 900,000 bytes read. Other files read
include source (1000 lines at 40 characters/line of 40,000 characters), the
code file, the relocatable, and debugging information written to the program
library.

The total number of bytes read or written for the 1000 line module is roughly
3,000,000. Assuming 256 bytes per sector, this represents roughly 12,000
sectors read or written.

General Assumptions:

Size of module being compiled - 1000 lines
"Average" use of packages
CPU use - 1 minute
Total size of compiler phases - 1MB
Total size of data read/written (excluding phases) - 2MB
Compilation-time - CPU-time + (Disk-access-time + transfer-time)

Assuming the worst case for the number of seeks (each sector requiring access
time), for a typical 8-inch Winchester disk with average access time around
80ms and a transfer rate of 500K bytes/second, transfer time would be 6
seconds and access time would be 960 seconds. This would give a compilation
speed of under 60 lines/minute (wall clock). (In comparison, an IBM 3370 has
an average access time of about 30ms and a transfer rate of around 1900K
bytes/second [Mini-Micro Systems, February 1981, p. 1111.)

Fortunately, more realistic assumptions yield more favorable results. First
of all, disk accessing is not random. The compiler phases are read
sequentially, largely eliminating the seek time for these sectors. The
compiler's temporary files are read sequentially, for the most part, so it is
not necessary that there be a seek for each sector read. Assuming that there
are 32 sectors/track, the seek time should only come into play between 10 and
15 times per phase load (since a phase should fit on 10-15 tracks). This
would involve an average seek for the initial read (80ms) plus about 450 ms
total seek time for the remaining reads. (This assumes that subsequent seeks
for a phase only require the head to move one track.) Since there are 10

138

JOVIAL/Ada Microprocessor Study Final Technical Report

memory loads, the total seek time for phase loading would be around 5.3
seconds.

Other compiler 1/0 is not as simple to analyze, since the pattern of accesses
cannot be determined a priori with the same degree of certainty. Reading or
writing four sectors at a time would reduce the number of seeks to 2000 (for
the 8000 remaining sectors). The actual number of seeks required would depend
on the pattern of references to the input and output files. A seek for every
four sectors would give a seek time of 160 seconds for the temporary files and
a compilation spp'!d of slightly under 260 lines/minute (wall clock).
Consecutive references to the same file would decrease the seek time and
increase the compilation speed.

Assumptions:
Sector size -256 bytes
Sectors/track - 32
Average access time - 80 ms
Track to track time - 20 ms
Transfer rate - 500KB/sec
Seek for each sector

Results:
Transfer time -6 seconds
Total I/O access time - 960 sec
Compilation speed - < 60 lines/minute (wall clock)

Assumptions:
Phases read sequentially (one seek per phase)
Data read in blocks of 4 sectors

Results:
Transfer time - 6 seconds
Total 1/O access time - 165 sec
Compilation speed -< 260 lines/minute (wall clock)

The corresponding calculation for a relatively fast 8" floppy disk drive, such
as the Shugart Associates SA851 gives the following results:

Assumptions (8-inch floppy disk):
Sector size -256 bytes
Average access time - 210 ma
Transfer rate - 50KB/sec

Results:
Transfer time - 60 seconds
Total 1/0 access time - 2520 sec

139

JOVIAL/Ada Microprocessor Study Final Technical Report

Compilation speed - < 40 lines/minute (vail clock)

Assumpt ions:
Phases read sequentially (one seek per phase)
Data read in blocks of 4 sectors

Results:
Transfer time - 60 seconds
Total 1/0 time -440 sec
Compilation speed - < 110 lines/minute (wall clock)

The 1/0 characteristics of the host system have a significant effect on
compilation speeds. It is unlikely that a system vith floppy disks can
provide sufficient throughput for an acceptable compilation speed to be
achieved. A system with Winchester disks, however, could provide acceptable
performance.

The estimates for the system with the Winchester disk are rather conservative
since disks with faster access times and higher transfer rates are available.
In addition, a 68000 running at full speed should actually be faster than the
KAlO for compilations. Also, any overlapping of CPU use and 1/0 would
increase the speed.

140

JOVIAL/Ada Microprocessor Study Final Technical Report

20. CONCLUSIONS

Current microcomputer systems are sufficiently powerful to be able to host
systems for serious software development. Compilation speeds in the
neighborhood of 250 lines/minute (wall clock) should be attainable for
compilers which generate optimized code. Speeds of over 550 lines per minute
have already been obtained for a microcomputer-hosted Ada compiler generating
unoptimized code.

There are several presently-available microprocessors around which it is
possible to build such a development system. The Motorola MC68000 is most
suited for such a system due LO its large address space and 32 bit
operations. The Zilog Z8000 and Intel 8086 could also be used as the basis
for such systems. The Intel 432, which should be available in the near
future, will easily support an MDS. The National Semiconductor 16032 will
also be a suitable host when it reaches the market.

It should be notee that not all microcomputer systems are suitable f or hosting
an Ada compiler and development system. In particular, many of the hobbyist
type microcomputers suffer from both main memory and peripheral storage
limitations.

Even the high-end microprocessors are quite inexpensive in relation to
mainframe computers. With respect to cost effectiveness, the biggest
competition for microcomputers comes from the so-called "superminis" such as
the VAX and its competitors.

We have presented here and in companion volumes a design for a development
system containing such tools as a conmmand language interpreter, an Ada
compiler, a linker, a debugger anid a text editor, as well as the operating
system itself and the database system. This system is implezientable on
current microcomputer hardware.

The fact that microcomputers are so inexpensive makes it possible to think
about the allocation of resources in different ways cumpa:ed tu the past.
Since computer power is now relatively cheap compared vith a programmer's
time, it becomes advantageous to provide hardware, above and beyond the

minimum necessary, in order to save on labor costs. 1he development system
described here straddles the gap between conventional timesharing and a
network.

In the future hardware costs are likely to continue to decrease, relative to
software costs, and there is likely to be a trend toward providing one (or
more) CPUs per user. Improvements in hardware will make a microcomputer-based
development system even more attractive in the future than it is today.

141

JOVIAL/Ada Microprocessor Study Final Technical Report

20.1 Future Work

The most important work which needs to be done is the implementation of a
microprocessor-based Ada development system.

There are a number of other issues which need to be addressed. One of the
most important is debugging, particularly for optimized code on a target which
has limited capabilities. None of the AIE designs fully addressed these
problems, and they have not been addressed here in as much detail as we would
have liked. It seems that it should be possible for the optimizer to provi~e
enough allocation information to the debugger, so that the debugger can know
where a given variable resides during the execution of a particular portion of
the test program. However, to our knowledge, no one has actually attempted to
prove rigorously that this can be done.

Debugging on a target which has very limited capabilities is a particular
problem for embedded computer system development. There are a number of
issues here, such as how the host and the target communicate, and how the
debugger manages to control the test program without being intrusive.

Program development environments deserve attention, both with regard to
Ada-specific environments and environments in general. Considerable work is
being done in this field. The AIE and ALS efforts should provide insight into
what is needed f or successful program develoment in Ada.

The Ada program library is an important part of the environment which needs to
be considered in greater detail. There are conflicting goals with respect to
ease of use and generality. A library that is too automatic may not be
flexible enough; one that is very powerful may be too complicated. We have
attempted to present a scheme that is a good compromise, but only experience
will prove or disprove this conclusion.

342

JOVIAL/Ada Microprocessor Study Final Technical Report

21. References

Ada Implementor's Group, Ada Implementor's Newsletter.

Adatec, Ada Letters, formerly Ada Implementor's Newsletter.

Aho, A. and Johnson, S., "LR Parsing", ACM Computing Surveys 6:2, June 1974,

pp.99-124.

Aho, A. and Ullman, J., Principles of Compiler Design. Addison-Wesley,

Reading, Mass., 1977, 6 04p.

Aho, A. and Ullman, J., The Theory of Parsing. Translation. and Compiling.

Prentice Hall, Englewood Cliffs, N.J., 1972.

Albrecht, P., et al, "Source-to-Source Translation: Ada to Pascal and Pascal

to Ada, SIGPLAN 15:11, November 1950, pp.
1 83 -19 3 .

Allison, D., "A Design Philosophy for Microcomputer Architectures", Computer.

Feb. 1977, pp. 35-43.

Backus, J., "The History of FORTRAN I, II and III", SIGPLAN 13:8, August 1978,

pp. 165-180.

Barach, D. and Fran, G., "NNP: An Easy to Implement Preprocessor for Text
Formatting", Software - Practice and Experience 10:5, May 1980, pp.

335-346.

Bell, J., "Threaded Code", CACM. June 1973, pp. 370-371.

Bell, Mudge and McNamara, Computer Engineering: A DEC View of Hardware Design.

Digital Press, Bedford, Mass., 1978, 585p.

Bloom, B. et al, Criteria for Evaluating the Performance of Compilers. IADC
Technical Report RADC-TR-74-259.

Boom, H., and De Jong, E., "A Critical Comparison of Several Programing
Language Implementations", Software - Practice and Exyerience 10:6, June
1980, pp. 435-473.

Bourne, S., 'The UNIX Shell", Bell System Technical Journal 57:6, part 2, pp.

1971-1990.

Boyer, R. and Moore, J., "A Fast String Searching Algorithm", CAC 20:10, Oct.

1977, pp. 762-772.

143

JOVIAL/Ada Microprocessor Study Final Technical Report

Brender, R., "The Case Against Ada as a Command Language", SIGPLAN 15:10, Oct.
1980, pp. 27-34.

Brender, R., and Nassi, J., "What is Ada?", Computer 14:6, June 1981,
pp.17-25.

Brosgol, B. et al, TCOL-Ada: Revised Report on an Intermediate Representation
for the Preliminary Ada Lanpuage. Carnegie-Mellon University,
CMU-CS-80-105, 149 p.

Buxton, J., "An Informal Bibliography on Programming Support Environments",
SIGPLAN 15:12, Dec. 1980, pp. 17-30.

Callahan, J., et al, "Bringing Virtual Memory to Microsystems", Electronics.
June 30, 1981, pp. 119-122.

Card, S., Moran, J., and Newell, A., "The Keystroke-Level Model for User
Performance Time with Interactive Systems", CACH 23:7, July 1980, pp.
396-410.

Carlson, W., "Ada: A Promising Beginning," Computer 14:6, June 1981, pp.
13-16.

Carter, J., "A Case Study of a New Code Generation Technique for Compilers",
CACM 20:12, Dec. 1977, pp. 914-920.

Champine, G., "Current Trends in Database Systems", in Selected Reprints in
Software. IEEE, 1980, pp. 196-210.

Cherlin, E., "The UNIX Operating System: Portability a Plus", Mini-Micro
Systems 14:4, April 1981, pp. 153-159.

Clark, W., "From Electron Mobility to Logical Structures: A View of
Integrated Circuits", ACM Computing Surveys 12:3, September 1980,
pp.325-356.

Cocke, J. and Schwartz, J., Programming Languages and Their Compilers. Courant
Institute, 1970.

Cole, S., "Ada Syntax Cross Reference", SIGPLAN 16:3, March 1981, pp. 18-47.

Comer, D., "The Ubiquitous B-Tree", ACM Computing Surveys 11:2, June 1979, pp.
121-138.

Computer. Ada Issue, June 1981.

144

JOVIAL/Ada Microprocessor Study Final Technical Report

Computer. Programming Environments Issue, April 1981.

Computer Automation, Scout Naked Mini 4/04 Handbook. January 1980.

Cragon, H., "The Elements of Single-Chip Microcomputer Architecture," Computer
13:10, Oct. 1980, pp. 27-41.

CSC/SEA, Ada Integrated Environments: Computer Program Development
Specification, 1981.

CSC/SEA, Ada Integrated Environment: Interim Technical Report, 1981.

CSC/SEA, Ada Integrated Environment: System Specification, 1981.

CSC/SEA, Design Evaluation Report for the Ada Integrated Environment, 1981.

Crespi-Reghizzi, S., Corti, P., and Dapra, A., "A Survey of Microprocessor
Languages," in Selected Reprints in Software, IEEE, pp. 47-65.

Dausmann, X. et al, An Informal Introduction to AIDA. University of Karlsruhe,
AIDA-12.

De Remer, F. and Pennelo, J., "Efficient Computation of IALR (1) Look-ahead
Sets", SIGPLAN 14:8, August 1979, pp.176-187.

Diana Reference Manual, Jan 20, 1981.

Digital, Microcomputer Interfaces Handbook. 1980, 736p.

Digital, Microcomputer Processor Handbook 1980, 602p.

Digital Research, PL/I-80 Reference Manual.

Ditzel, D., "Program Measurements on a High-Level Language Computer", Computer
13:8, August 1980, pp. 62-78.

Dolotta, J., Wright, R., and Mashey, J., "The Programmers Workbench", Bell
System Technical Journal 57:6, part 2, July-August 1978, pp. 2177-2200.

Donegan, M., "The Design of a Space Efficient Compiler", in Proceedings of the
First SIGMINI Symposium on Small Systems, New York, August 2-3, 1978,
SIGMINI 4:4, August 1978.

Earnest, C., in Cocke & Schwartz, Programming Languages and their Compilers.
Courant Institute, 1970.

145

JOVIAL/Ada Microprocessor Study Final Technical Report

EDN. uPIuC Chip Directory, November 5, 1980.

Edwards, J., Tailored Jovial J73 for Small-Scale Development Projects in

Avionics.

Electronics, April 17, 1980, 650p.

Elger, P., Some Observations Concerning Existing Software Environments. 39p.

Elshoff, J., "An Analysis of Some Commercial PL/I Programi", IEEE Transactions

on Software Engineering. SE 2(2), 1976, pp. 113-120.

Embley, D., and Nagy, G., "Behavioral Aspects of Text Editors", Computing

Surveys 13:1, March 1981, pp. 33-70.

Estell, R., "Benchmarks and Watermarks", Performance Evaluation Reviev. Fall

1980, pp. 39-44.

Forsyth, C., and Howard, R., "Compilation and Pascal on the New

Microprocessors", BYTE. August 1978.

Franta, W., "JOYCE: A Next Generation Personal Computer", in Proceedings of

the Third Symvosium on Small Systems, SIGSMALL, Sept. 1980, pp. 108-113.

Fisher, C., and LeBlanc, R., "Efficient Implementation and Optimization of

Run-Time Checking in Pascal", in Proceedings of an ACM Conference on

Language Design for Reliable Software, SIGPLAN Notices 12:3, March 1977,

pp. 19-24.

Fisher, D., Design Issues for Ada Program Support Environments: A Catalogue of
Issues, Science Applications, Inc. report SAI-81-289-WA, 21p.

Flynn, M., "Directions and Issues in Architecture and Language", Computer
13:10, Octs 1980, pp. 5-26.

Ganzinger, H. and Ripken, K., "Operator Identification in Ada: Formal

Specification, Complexity, and Concrete Implementation", SIGPLAN 15:2,

Feb. 1980, pp. 30-42.

General Dynamics, DIS.: Digital Integrating Subsystem, 5 November 1980, 63p.

Geschke, C., Morris, J. and Satterthvaite, "Early Experiences with Mesa", CACM

20:8, Aug. 1977, pp. 540-552.

Gilbreath, J. "A High-Level Language Benchmark", BYTE 6:9, Sept. 1981,

pp.180-198.

146

JOVIAL/Ada Microprocessor Study Final Technical Report

Glass, R., "Real-Time: The 'The Lost World' of Software Debugging and
Testing", CACM 23:5, May 1980, pp. 264-271.

Goodenough, J., "The Ads Compiler Validation Capability", Computer 14:6, June
1981, pp.57-64.

Goodenough, J., "Ada (July 1980) Syntax Cross Reference Listing", SIGPLAN
15:10, Oct. 1980, pp. 48-56.

Graham, S., "Table-Driven Code Generation", Computer 13:8, August 1980, pp.

25-37.

Grappel, R., and Hemenway, J., "Benchmarks for 16-bit Processors", EDNj April

1, 1981, pp. 179-265.

Grappel, R., and Hemenway, J., "Compare the Newest 16-bit uPs to Evaluate
Their Potential", EDN 25:16, September 5, 1980, pp. 197-201.

Greenspan, L., and Belimantel, M., Design Issues for the Advanced Avionic
Computer Architecture, Sanders Assoc., 1980.

Gutz, S., Wasserman, A., and Spier, M., "Personal Development Systems for the
Professional Programmer", omuter 14:4, April 1981, pp. 45-53.

Hall, D., Scherrer, D., and Sventek, J., "A Virtual Operating System", CACM
23:9, Sept. 1980, pp. 495-502.

Heckel, P., "A Technique for Isolating Differences Between Files", CACM 21:4,

April 1978, pp. 264-268.

Hemenway, J., and Grappel, R., "Intel's iAPX 'Micromainframe"', Mini-Micro

Systems 14:5, May 1981, pp. 73-89.

Heyliger, G. et al., Recommendations for a Retargetable Compiler. RADC

technical report RADC-TR-79-351, 1980, 14 9p.

Hillsberg, B., "Generic Terminal Support", Operating Systems Review. 15:2,
April 1981, pp.10-1 5 .

Hoare, C., "The Emperor's Old Clothes", CACM 24:2, Feb. 1981, pp. 75-83.

InfoWorld, 2:15, Sept. 1, 1980.

Intel, Introduction to the iAPX 432 Architecture.

Intel, iAPX 432 General Data Processor Architecture Reference Manual. 1981.

147

JOVIAL/Ada Microprocessor Study Final Technical Report

Intel, The 8086 Family User's Manual, 1979.

Interface Meeting on Programming Systems in the Small Processor Environment,
SIGPLAN 11:4, April 1, 1976, 16 4p.

Intermetrics/MCA, Ada Integrated Environment: Computer Pronram Development
Specification, 1981.

Intermetrics/MCA, Ada Integrated Environment: Interim Techincal Report. 1981.

Intermetrics/MCA: System Specification, 1981.

Intersystems, Intersystems Pascal/Z A High Level Programming Lanauage. Version
3.0, 1960.

Inui, N., Kikuchi, H. and Sakai, T., "16-Bit C-MOS Processor Packs in Hardware
for Business Computers", Electronics 54:12, June 16, 1981, pp. 182-186.

Ivie, E., "The Programmer's Workbench - A Machine for Software Development",
CACMH 20:10, Oct. 1977, pp. 746-753.

Jensen and Wirth, Pascal User Manual and Report. Springer-Verlag, New York
1974, 167p.

Johnson, R., "Major Firms Join Unix Parade", Electronics 54:7, April 7, 1981,
pp.10 8 -112 .

Johnson, R., "Microsystems Exploit Mainframe Methods, Electronics. August 11,
1981, pp. 119-127.

Johnson, S., "Language Development Tools in the Unix System", Computer 13:8,

pp. 16-24.

JRT Systems, JRT Pascal User's Guide. San Francisco, 1980.

JUG, USAF-JUG Ada Integrated Environment Contractor Evaluation. 1981.

Kane, G., 68000 Microprocessor Handbook. Osborne/McGraw-Hill, Berkeley, Ca.,
1981, l13p.

Kane, J. and Osborne, A. An Introduction to Microcomnuters. Volume 3, Some
Real Support Devices, Osborne & Associates, Berkeley, 1978.

Kennedy, K., "Node Listings Applied to Data Flow Analysis", 2nd POPL. 1975,
pp. 10-21.

148

JOVIAL/Ada Microprocessor Study Final Technical Report

Kernighan, B., and Mashey, J., "The UNIX Programing Environment", Computer
14:4, April 1981, pp. 12-24.

Kildall, G., "A Unified Approach to Global Program Optimization", POPL 1973,
p.19 4-2 06 .

Klingman, Edwin, Microprocessor Systems Designs, Prentice-Hall, Englevood
Cliffs, N.J., 1977.

Knuth, D.E., The Art of Computer Programming. Vol. 3: Sorting and Searching,
Addison-Wesley: Reading, Mass., 1973, 723p.

Knuth, D.E., "An Empirical Study of FORTRAN Programs", Software - Practice and
Experience, 1971, pp. 10 5-13 3 .

Lamb, D., Construction of a Peephole Optimizer. Carnegie-Mellon University
Report CMU-CS-80-141, Aug. 1980, llp.

Lamb, D., "Construction of a Peephole Optimizer", Software - Practice and
Experience 11:6, June 1981, pp. 639-647.

Lamb, D., et al, The Charrette Ada Compiler. Carnegie-Mellon University Report
CMU-CS-80-148, Oct. 1980, 123 p.

Lampoon, B., and Sproull. R., "An Open Operating System for a Single-User
Machine", Proceedings of the Seventh Symposium on Operating System

Principles, pp. 98-105.

Ledgard, H. et al, "The Natural Language of Interactive Systems", CACM 23:10,

Oct. 1980, pp. 556-563.

Lehman, M., Pascal/MT Release 3.0 User s Guide, MT Microsystems
Cardiff-by-the-Sea, Ca, 1980, 93p.

Leverett, B. et al, "An Overview of the Production-Quality Compiler Compiler
Project", Computer 13:8, August 1980, pp. 38-50.

Lias, E., "Tracking the Elusive KOPS", Datamation 26:11, Nov. 1980, pp.
99-105.

Loveman, D., "Program Improvement by Source to Source Tranformation", 3rd

POPL. 1976, p.14 0 -15 2 .

Lunde, A., "Empirical Evaluation of Some Features of Instruction Set Processor

Architectures", CACM 20:3, March 1977, pp. 143-152.

149

JOVIAL/Ada Microprocessor Study Final Technical Report

Lycklama, H., "UNIX on a Microprocessor", Bell Systems Technical Journal 57:6,
part 2, July-August 1978, pp. 2087-2102.

McCauley, E., Doka, E. and Baladi, N., "Challenging the Minis", Mini-Micro
Systems 14:9, September 1981, pp. 135-140.

Mead, C., and Conway, L., Introduction to VLSI Systems, Addison-Wesley,
Reading, MA, 1980, 3 96p.

Metcalfe, R. and Boggs, D., "Ethernet: Distributed Packet Switching for Local
Computer Networks", CACM 19:7, July 1976, pp. 395-404.

Micropro International Corp., Word Star User's Guide. San Rafael, Ca., 1980.

Military Standard JOVIAL (J73), MIL-STD-1589B (USAF), 06 June 1980, 168p.

Miller, L. and Thomas, J., "Behavioral Issues in the Use of Interactive

Systems", International Journal of Man-Machine Studies 9, 1977, pp.

509-536.

Mooney, C., in [JUG81.

Moran, T., "Guest Editor's Introduction: An Applied Psychology of the User",
Computing Surveys 13:1, March 1981, pp. 1-12.

Morris, J. and Schwartz, M., "The Design of a Language-Directed Editor for
Block-Structured Languages", SIGPLAN 16:6, June 1981, pp. 28-33.

Morse, S., et al, "Intel Microprocessors - 8008 to 8086", Computer 13:10,
Oct.1980, pp. 42-62.

Motorola, MC68000 16-Bit Microprocessor User's Manual. 1980.

Nelson, V., and Nagle, H., "Digital Filtering Performance Comparison of 16-Bit
Microcomputers", IEEE Micro 1:1, February 1981.

Noyce, R., and Hoff, M., "A History of Microprocessor Development at Intel",
IEEE Micro 1:1, Feb. 1981.

Ogdin, C., Microcomputer Management and Programmina. Prentice-Hall, Englewood
Cliffs, 1980, 348p.

Osborne, A., An Introduction to Microcomputers: Volume 1 Basic Concepts,
Osborne/McGraw-Hill, Berkley, Ca., 1980.

Osborne and Kane, An Introduction to Microcomputers, Vol. 2, Osborne & Assoc.,

150

JOVIAL/Ada Microprocessor Study Final Technical Report

Berkeley, CA, 1979.

Osterweil, L., "Software Environment Research: Directions for the Next Five

Years", Computer 14:4, April 1981, pp. 35-44.

Persch, G., et al, AIDA Reference Manual, University of Karhrube, AIDA:14.

Persch, G., et al, "An LALR (1) Grammar for (Revised) Ada", SIGPLAN 16:3,

March 1981, pp. 85-98.

Peuto, B., and Shustek, "Current issues in the Architecture of

Microprocessors", Computer Feb. 1977, pp. 20-25.

Phase One Systems, OASIS System Reference Manual, Oakland, 150p.

Poe, E. and Goodwin, J., The S-100 and Other Micro Buses. Howard W. Sams I

Co., Inc.: Indianapolis, 1979, 144p.

Rationale for the Design of the Ada Programming Language, SIGPLAN Notices,

14:6, June 1979, part B.

Rattner, J., and Lattin, W., "Ada Determines Architecture of 32-bit

Microprocessor", Electronics. February 24, 1981, pp. 1 19-1 26 .

Redell, D., et al, "Pilot: An Operating System for a Personal Computer", CACH
23:2, Feb. 1980, pp. 81-91.

Reference Manual for the Ada Programming Language, 1980.

Ritchie, D., "A Retrospective", Bell System Technical Journal 57:6, part 2,

pp. 1947-1970.

Ritchie, D., and Thompson, K., "The UNIX Time-Sharing System", Bell System
Techincal Journal 57:6, part 2, pp. 1905-1930.

Roberts, T., Evaluation of Computer Text Editors. Xerox Technical Report
SSL-79-9, November 1979.

Robertson, C., et al, Experimental Evaluation of the ZOG Frame Editor.

Carnegie Mellon University, CMU-CS-81-112, April 1981, 14p.

Roman, A., "Winchester Market Shifts to 5 1/4-in Drives", Mini-Micro Systems
14:2, February 1981, pp. 85-97.

Rosen, B., "High-Level Data Flow Analysis", CACH 20:10, Oct. 1977, pp.
712-724.

151

JOVIAL/Ada Microprocessor Study Final Technical Report

Saltzer, J., "Runoff", in Crisman, P., TheComvatible Time-Sharing System. MIT
Press: Cambridge, Mass., 1965.

Sandevall, E.. "Programing in the Interactive Enviroment: The LISP
experienct ACM Computing Surveys 10:1, March 1978, pp. 35-72.

Santoni, A., "Microcomputer Development Systems", EDN 25:16, September 5,
1980, pp. 141-150.

SDL/SSL, United Kingdom Ministry of Defense Ada Support System Study. Phase 2
& 3 Reports.

SDL/SSL, Ada Support System Study. Phase 4 Report, The Initial Host, June 180.

Schneiderman, B., Software Psychology. Winthrop, Cambridge, Mass., 1980, 320p.

Shimasaki, M., et al, "An Analysis of Pascal Programs in Compiler Writing",

Software Practice and Experience 10:2, pp. 149-157.

Shugart Associates, SA400 Minifloppy Diskette Storage Drive OEM Manual.
Revision 5, 1977.

Sites, R.L., "Programming Tools: Statement Counts and Procedure Timings",
SIGPLAN Notices, 13:12, Dec. 1978, pp. 98-101.

Snodgrass, R., "A Sophisticated Microcomputer User Interface", in Proceedings
of the Third Symposium on Small Systems, SIGSMALL. Sept. 1980, pp.
97-105.

Softech, Ada Compiler Validation Implementator's Guide.

Softech, Survey and Measurement of Properties of High-Level Lanaguage.
AFWAL Interim Technical Report HLLM #4.14.1A. November 1980. 249p.

Sorcim, Pascal/M User's Reference Manual, Digital Marketing, Walnut Creek, Ca,
1979, 77p.

Stenning, V., "The Ada Environment: A Perspective", Computer 14:6, June 1981,
pp.26-36.

Stonebraker, M., "Operating Systew Supports for Database Management", CACM
24:7, July 1981, pp. 412-418.

"Stoneman", Requirements for Ada Programming Support Environments.

Supersoft, Forth. Champaign, Il. 1980.

152

JOVIAL/Ada Mictoprocessor Study Final Technical Report

Suzuki, N., and Ishihata, K., "Implementations of an Array Bound Checker",
POPL, 1977, pp. 132-143.

Szymanski, J., "Assembling Code for Machines with Span-De;redent
Instructions", CACM 21:3, April 1978, pp. 300-308.

Tanenbaum, A., "Implications of Structured Programming for Machine
Architecture, CACM 21:3, March 1978, pp. 237-246.

Teitelbaum, T., Reps, T. and Horwitz, S., "The Why and Wherefore of the
Cornell Program Synthesizer, SIGPLAN 16:6, June 1981, pp. 8-16.

Teitelman, W. and Masinter, L., "The Interlisp Programming Environment",
Computer 14:4, April 1981, pp. 25-34.

Texas Instruments, Ada Integrated Environment: Computer Program Development
Specification, 1981.

Texas Instruments, Ada Integrated Environment: Interim Techincal Report. 1981.

Texas Instruments, Ada Integrated Environment: System Specification. 1981.

Texas Instruments, 990 Computer Family Systems Handbook. May 1976.

Thacker, C., et al, Alto: A Personal Computer, Xerox Technical Report

CSL-79-11.

Thompson, K. "UNIX Implementation", Bell System Technical Journal. 57:6, part

2, July-August 1978, pp. 1931-1946.

Titus, C., et al, 16-Bit Microprocessors. Howard W. Sams & Co., Inc.:

Indianapolis, 1981, 350p.

Tobias, J., "LSI/VLSI Building Blocks", Computer 14:8, August 1981, pp.83-10 1 .

Toong, H. and Gupta, A., "An Architectural Comparison of Contemporary 16-Bit
Microprocessors", IEEE Micro 1:2, May 1981.

TRW, User's Manual for Jovial Interactive Debugger. April 21 1981.

UCSD Pascal System Reference Manual, 1978.

Ullman, J., Principles of Database Systems. Computer Science Press, Potomac,,
Md., 1980, 379p.

Wadlow, T., "The Xerox Alto Computer", BYTE 6:9, September 1981, pp. 58-68.

153

JOVIAL/Ada Microprocessor Study Final Technical Report

Wallace, B., Microsoft Pascal Reference Manual Preliminary Version 1.8.

Microsoft, Bellevue, Wa., 1979, 119p.

Wasserman, A. "Guest Editor's Introduction: Automated Deveopment

Environments", Computer 14:4, April 1981, pp. 7-11.

Welsh, J., "Economic Range Checks in Pascal", Software-Practice & Experience

8:1, Jan. 1978, pp. 85-98.

Western Digital, WDI90 Pascal MICROENGINE Reference Manual.

Wirth, N., Algorithms + Data Structures - Programs, Prentice-Hall, 1976, 366p.

Wirth, N., "The Design of a PASCAL Compiler", Software-Practice & Experience
1:4, Oct.-Dec. 1971, pp. 309-334.

Wise, Chen and Yokely, Microcomputers: A Technology Forecast and Assessment to

the Year 2000. John Wiley & Sons, New York, 1980, 251p.

Wolfe, H., et al, "The Ada Language System", Computer 14:6, June 1981, pp.

37-46.

Wulf, W., et al, The Design of an Optimizing Compiler. American Elsevier, New

York, 1975, 165p.

Zaks, R., The CP/M Handbook with MP/M. Sybex: Berkeley, 1980. 3 2 1p.

Zaks, R., Military Microprocessor Systems. Sybex, 1976.

Zeigler, S., et al, "Ada for the Intel 432 Microcomputer", Computer 14:6, June

1981, pp. 47-56.

Zilog, Z8000 CPU Technical Manual. 1980.

154

JOVIAL/Ada Microprocessor Study Final Technical Report

Appeudix A

Minimal J73/1 Compiler Phase Sizes (in words) in memory

Host: DEC-10 IBM Univac 1108

Root size - 14,473 Root size - 17,352 Root size -20,928

Phase Name Phase size Total Phase-size Total Phase size Total

J73 10,986 25,759 13,262 30,614 17,936 38,864

Pass 2 32,843 47,616 47,545 64,897 35,085 56,010

Pass 3 38,412 53,185 48,117 65,469 39,423 60,349

Pass 4 19,392 34,165 46,700 64,052 23,740 44,666

Pass 5 2,297 17,010 3,013 20,365 9,446 30,372

Minimal J73 Compiler Phase Sizes (in words) in memory

Host: DEC-10 IBM

Root size =17,418 Root size -20,576

Phase Name Phase size Total Phase size Total

J73 13,834 31,252 17,698 38,274

Pass 2A 43,622 61,040* 60,852 81,428 - 325,712 bytes

Pass 2B 42,395 59,813 59,237 79,813

Pass 3 37,782 55,200 50,340 70,916

Pass 4 19,722 37,140 50,026 70,602

Pass 5 2,518 19,936 3,492 24,068

Notes: *-this is 2,197,440 bits which is equivalent to 274,680 8-bit bytes.

Root size includes the EXEC and debugging routines which are
permanently resident. Some of this spac is used for the symbol table
when the compiler is not being run in debugging mode.

155

JOVIAL/Ada Microprocessor Study Final Technical Report

Appendix B

Sizes of Executables on Disk for the SEA J73 Compiler on the DEC-10

Target DEC-10 15A HBC MAGIC

Front End
+ compool output
(Disk blocks) 1,340 1,340 1,340 1,340

Back End
(Disk blocks) 736 740 704 800

Total Blocks 2,076 2,080 2,044 2,140

Size in Words
(128 words/block) 265,728 266,240 261,362 273,920

Size in bits 9,566,208 9,584,640 9,418,752 9,061,120

Size in 8 bit

byte equivalents 1,195,776 1,198,080 1,177,344 1,232,640

Notes; 1. The targets are:

BC - AN/AYK-15
15A - MIL-STD-1750
MAGIC - DELCO M362F-2

2. The size listed under each target is for an individual target.
Only one front end is required for all targets. Thus, for all
four targets the total size (in blocks) is (1340 + 736 + 740 + 704
+ 800) - 4320 rather than (4 * 1340 + 736 + 740 + 704 + 800).

3. Since the DEC-10 has 36 bit words and uses 7 bits/character, the
sizes were computed to 8-bit byte equivalents because
microcoiputer storage is normally measured in 8-bit bytes.

156

JOVIAL/Ada Microprocessor Study Final Technical Report

Appendix C

J73/1 Compilation Speeds

Compilation Speeds for J73/I compiler on DEC-10 (KLIO) TENEX

CPU Time Lines/ Elapsed Lines/

Module Lines (sec) CPU Minute Time (min) Minute Notes

COGEN 3998 45.33 5289 13.5 296 No listings

REPL 3750 49.81 4517 15.6 240

SDBUG 2993 26.74 6716 2.8 1069

COMPUT 4087 47.33 5181 4.7 870

COMPAR 3133 27.78 6767 3.9 803

GPRCS 5749 80.58 4280 24.5 2350

GPRCS 5749 80.08 4370 2.5 2300 Source

GPRCS 5749 106.32 3244 4.7 1223 Source + XREF

157

JOVIAL/Ada Microprocessor Study Final Technical Report

Compilation Speeds for J73/I Compilations on DEC-10 KI10

CPU Time Lines/CPU Elapsed Lines/ CPU Lines/CPU
Module Lines (sec) Minute Time (sec) Minute Lines Time Minute

PEXPR 1393 23.611 3540 35 2388 1394 23.329 3585

KNTZTM 1826 29.908 3663

FPRT 1023 19.531 3143 44 1395 1019 17.904 3415

INIT 1541 36.210 2553 54 1712 1533 34.691 2651

INTCST 1715 29.574 3479 94 1095 1647 27.633 3576

INTRP 2364 51.954 2730 139 1020 2292 48.406 2841

ITMDSC 1765 30.700 3450 60 1765 1728 29.014 3573

ITMPRC 1793 29.439 3654

JCOM 873 17.152 3054 27 1940 869 16.422 3175

JOVDMD* 54 5.853 554 13 249 54 5.532 586

MYPRCS 2805 57.734 2915 124 1357 2804 55.977 3006

OTPK 1963 36.240 3250 86 1370 1917 33.512 3432

OVRPRC 2009 35.033 3441 120 1005 2008 33.793 3565

PRCPRI 1911 33.596 3413 80 1433 1960 33.671 3493

PRCPR2 1800 32.930 3280 60 1800 1799 30.600 3527

PRSETS 2052 36.048 3415

PRSET1 1849 30.920 3588 70 1585

PRSET2 2486 45.456 3281 151 988

SRCH 1063 19.877 3209 72 886 1057 17.344 3657

STATPR 1721 30.259 3413 90 1147 1722 28.982 3565

158

JOVIAL/Ada Microprozessor Study Final Technical Report

CPU Time Lines/CPU i iapsed Lines/ CPU Lines/CPU
Module Lines (sec) Minute Tirac (sec) Minute Lines Time Minute

STRTN 1556 31.026 3009 48 1945 1550 29.855 3115

TBLPRC 2566 43.610 3530 63 2444 2017 32.776 3672

TOKNI 2543 50.280 3035 83 1838 2542 48.758 3128

TOKN2 1619 27.691 3514 43 2259 1618 26.91i. 3607

Note: The compile speed for JOVDID is much slower for two reasons. First, it
is a much smaller module than the rest, so that phase load time is ,,ore
significant. Second, the module contains many define expansions (more
than one per line) so there is a significant amount of additional
processing per source line.

159

JOVIAL/Ada Microprocessor Study Final Technical Report

Appendix D

Speeds for J73 Compilations of JCVS tests on DEC-10s

Name Lines KA10 time KAlO speed KI10 time KI10 speed

ETEST1 2872 202 853 86 2004

ETEST2 4927 311 951 117 2527

ETEST3 2729 177 925 69 2373

ETEST4 3144 154 1225 74 2549

ETEST5 2788 140 1195 59 2835

ETEST6 2647 136 1168 59 2692

Notes: 1. Times are given in CPU seconds.
2. Speeds are given in lines per CPU second.

160

JOVIAL/Ada Microprocessor Study Final Technical Report

Appendix E

Compilation Times and Speeds for USCD Pascal Compilers

Name Lines Time Lines/Minute Notes

SRCH 162 27.8 349 No listings,
No swapping

GSTMP 127 27.1 281

FORM 381 1:00 381

DASSY 957 3:26.8 278

DASSY 984 3:33.4 277

TRACP 202 1:09.2 175 No listings
Compiled
in swapping mode
because there was
not enough stack
space to compile
without swapping.

SRCH 164 1:27.6 112 Source listing to
disk, no swapping.

GSTMP 127 1:10.3 108

DASSY 957 13:34.8 70

DASSY 985 13:46.0 72

SRCH 164 1:42.1 96 Sour,.o listing to
disk, swapping.

GSTMP 127 1:26.4 88

TRACP 202 2:11.4 92

161

JOVIAL/Ada Microprocessor Study Final Technical Report

Appendix F

Compilation, Assembly and Linking Times and Speeds for Pascal/Z

Name Lines CT AT C&AT LT TT CS C&AS CLAS Notes

SRCH 162 1:15.9 1:04.3 2:20.2 31.1 2:51.3 128 69 57 No listings

GSTMP 127 1:06.6 1:02.1 2:08.7 30.8 2:39.5 114 59 48

TRACP 202 1:38.9 1:20.8 2:59.7 30.9 3:30.6 123 67 58

SRCH 162 1:33.5 1:04.3 2:37.8 31.1 3:08.9 104 62 51 Source list
only

GSTMP 127 1:22.1 1:02.1 2:24.2 30.8 2:50.0 93 53 45

TRACP 202 1:57.7 1:20.8 3:18.5 30.9 3:49.4 103 61 53

SRCH 162 1:33.5 3:28.7 5:02.2 31.6 5:33.8 104 32 29 All listings

GSTMP 127 1:22.1 2:05.9 3:28.9 36.3 4:05.2 93 36 31

TRACP 202 1:57.7 3:26.0 5:23.7 35.5 5:59.2 103 37 34

Notes: 1. These results were obtained through two sets of runs - one with
listings and one without, rather than 3 independent sets of tests.
2. All speeds are in lines/minute.

Column Reading Key:
CT Compile Time
C&AT Compile & Assembly Time
LT Link Time
TT Total Time
CS Compile Speed
C&AS Compile & Assembly Speed
CLAS Compile, Link, Assembly Speed

162

JOVIAL/Ada Microprocessor Study Final Technical Report

Appendix G

Code Sizes for Compiler Benchmarks (in bits)

Compiler

J73/I (DEC-10) UCSD Pascal Pascal Z

Test Without jump With jump
table table

SRCH 6,802 bits 2,536 bits 2,656 bits 6,336 bits

GSTMP 6,624 bits 3,096 bits 3,216 bits 7,432 bits

TRACP 11,340 bits 4,512 bits 4,640 bits 11,906 bits

Total 24,768 10,144 10,512 24,824

Z of
DEC-10 Size 100% 41% 42% 100%

163

JOVIAL/Ada Microprocessor Study Final Technical Report

Appendix H

Frequency of Occurrence of IL Tokens for Various Compiler Phases
(Statistics are for phases hosted on the IBM 370 unless otherwise
stated)

J73/I Front End J73 Front End
Host - DEC-10

IL Occurrences Z IL Occurrences Z

PRIM 38,912 41.39 PRIM 51,511 40.08
STNO 10,551 11.22 STNO 15,322 11.92
ATTR 6,729 7.16 ATTR 11,110 8.64
MUL 5,698 6.06 REPL 8,210 6.39
REPL 5,462 5.81 SUBS 7,463 5.81
SUBS 5,049 5.37 PARM 7,116 5.54
LABL 4,157 4.42 LABL 6,900 5.37
PARM 4,128 4.39 CALL 3,547 2.76
CALL 2,197 2.34 ENDC 3,547 2.76
ENDC 2,197 2.34 GOTO 2,644 2.06
GOTO 1,897 2.02 AT 1,827 1.42
NQ 1,136 1.21 EQ 1,771 1.38
AT 1,093 1.16 NQ 1,655 1.29
EQ 1,060 1.13 ADD 1,370 1.06
ADD 993 1.06 MUL 805 .63
SUB 422 .45 SUB 599 .47
BIT 295 .31 BIT 367 .29
DIV 243 .26 PROC 334 .26
PLST 213 .23 EPRC 334 .26
PROC 211 .22 DIV 320 .25
EPRC 211 .22 PLST 213 .17
GR 176 .19 GR 197 .15
LS 117 .12 BSIZ 184 .14
LOC 116 .12 NNUS 164 .13
MNUS 98 .11 LS 163 .13
GQ 81 .09 LOC 131 .10
LQ 79 .08 GQ 117 .09
MOD 68 .07 LQ 97 .08
BSIZ 61 .06 MOD 80 .06
COMP 57 .06 UNKN 70 .05
UNKN 52 .06 AND 62 .05
AND 40 .04 COMP 43 .03
OR 37 .04 CIFR 40 .03

164

JOVIAL/Ada Microprocessor Study Final Technical Report

TERM 34 .04 OR 39 .03

SHIFT 33 .04 TERM 39 .03

FSIZ 32 .03 FSIZ 37 .03

CIn 25 .03 SHIFT 36 .03

ABS 19 .02 ABS 28 .02

IP 9 .01 UP 16 .01

BYT 7 .01 CRlF 10 .01

CRlF 6 .01 BYT 8 .01

CSIZ 5 .01 XOR 6 .00

XOR 2 .00 CSIZ 2 .00

EQV 1 .00 EQV 2 .00
FILG 1 .00

94,009 128,527

165

.-- .

JOVlAL/Ada Microprocessor Study Final Technical Report

Optimizer Code Generator

IL Occurrences Z IL Occurrences Z

PRIM 10,973 41.41 PRIM 25,861 40.58
STNO 2,959 11.17 ATTR 7,219 11.33
ATTR 1,614 6.09 STNO 5,407 8.48
MUL 1,609 6.07 PARM 4,506 7.07
REPL 1,550 5.85 REPL 3,509 5.51
SUBS 1,404 5.30 MUL 2,970 4.66
LABL 1,326 5.00 AT ,794 4.48
PARM 1,183 4.46 SUBS 2,443 3.83
CALL 601 2.27 LABL 1,911 3.00
ENDC 601 2.27 CALL 1,842 2.89
GOTO 582 2.20 ENDC 1,842 2.89
AT 505 1.91 GOTO 707 1.11
EQ 365 1.38 NQ 570 .89
NQ 227 .86 EQ 557 .87
ADD 157 .59 ADD 319 .50
PROC 129 .49 PROC 179 .28
EPRC 129 .49 EPRC 179 .28
SUB 111 .42 BIT 172 .26
PLST 106 .40 PLST 138 .22
BIT 43 .16 DSIZ 88 .14
GQ 43 .16 AND 80 .13
LS 40 .15 SUB 63 .10
MNUS 40 .15 BSIZ 55 .09
COMP 28 .11 LQ 54 .08
GR 26 .10 GR 53 .08
DIV 25 .09 COMP 39 .06
AND 24 .09 LS 30 .05
LQ 21 .08 MNUS 30 .05
FSIZ 19 .07 OR 27 .04
MOD 12 .05 DIV 21 .03
BSIZ 11 .04 GQ 19 .03
OR 11 .04 MOD 14 .02
LOC 11 .04 SHIFT 9 .01
CIFR 8 .03 TERM 8 .01
ABS 8 .03 ABS 5 .01
SHIFT 6 .02 LOC 3 .00
CRIF 3 .01 SPTR 3 .00
TERM 3 .01 UNKN 1 .00
XOR 2 .01 CSIZ 1 .00
CSIZ 2 .01
BYT 1 .00 63,728
EQV 1 .00

26,519

166

JOVIAL/Ada Microprocessor Study Final Technical Report

Editor

IL Occurences

PRIM 14,339 42.11
STNO 3,089 9.07
ATTR 2,298 6.75
MUL 2,030 5.96
PARM 2,001 5.88
REPL 1,838 5.40
SUBS 1,784 5.24
LABL 1,387 4.07
AT 944 2.77
CALL 815 2.39
ENDC 815 2.39
GOTO 626 1.84
ADD 474 1.39
NQ 281 .83
EQ 254 .75
BSIZ 140 .41
BIT 133 .39
SUB 126 .37
EPRC 91 .27
PROC 91 .27
LS 73 .21
PLST 58 .17
DIV 46 .14
GR 45 .13
GQ 37 .11
UNKN 37 .11
LOC 36 .11
COMP 31 .09
AND 22 .06
LQ 22 .06
CIFR 14 .04
BYT 14 .04
ABS 12 .04
OR 11 .03
CSIZ 10 .03
MNUS 10 .03
MOD 7 .02
TERM 5 .01
CRIF 2 .01
FSIZ 2 .01
SHIFT 1 .00

34,051

167

JOVIAL/Ada Microprocessor Study
Final Technical Report

TOTALS
TOTALS

J73/1
J73

Host - DEC-10

IL Occurences % IL Occurences %

PRIM 90,085 41.27 PRIM 97,053 40.18

STNO 22,006 10.08 STNO 26,787 11.08

ATTR 17,860 8.18 ATTR 22,241 9.21

REPL 12,359 5.66 REPL 15,107 6.25

MUL 12,307 5.64 PARM 14,806 6.13

PARM 11,818 5.41 SUBS 13,094 5.42

SUBS 10,680 4.89 LABL 11,524 4.77

LABL 8,781 4.02 CALL 6,805 2.82

CALL 5,455 2.50 ENDC 6,805 2.82

ENDC 5,455 2.50 AT 5,336 2.44

AT 6,070 2.51 GOTO 4,559 1.89

GOTO 3,812 1.75 EQ 2,947 1.22

EQ 2,236 1.02 NQ 2,733 1.13

NQ 2,214 1.01 ADD 2,310 .96

ADD 1,943 .89 MUL 1,783 .74

SUB 722 .33 SUB 899 .37

BIT 715 .29 PROC 733 .30

PROC 610 .28 EPRC 733 .30

EPRC 610 .28 BIT 715 .30

rLST 515 .24 PLST 515 .21

DIV 335 .15 DIV 412 .17

GR 300 .14 BSIZ 390 .16

BSIZ 267 .12 GR 321 .13

LS 260 .12 LS 306 .13

GQ 180 .08 MNUS 244 .10

M14US 178 .08 GQ 216 .09

LQ 176 .08 LQ 194 .08

LOC 166 .08 AND 188 .08

AND 166 .08 LOC 181 .07

COMP 155 .07 COMP 141 .06

MOD 101 .05 MOD 113 .05

TJNKN 90 .04 UNKR 108 .04

DSIZ 88 .04 DSIZ 88 .04

OR 86 .04 OR 88 .04

FSIZ 53 .02 CIFR 62 .03

TERM 50 .02 FSIZ 58 .02

SHIFT 49 .02 TERM 55 .02

CIFR 47 .02 ABS 53 .02

ABS 44 .02 SHIFT 52 .02

BYT 22 .01 BYT 23 .01

168

JOVIAL/Ada Microprocessor Study Fiial Technical Report

CSIZ 18 .01 EXP 16 .01
CRIF 11 .01 CSIZ 15 .01
EXP 9 .00 CRIF 15 .01
XOR 4 .00 XOR 8 .00
SPTR 3 .00 EQV 3 .00
EQV 2 .00 SPTR 3 .00

FLAG 1 .00

218,307 241,563

169

JOVIAL/Ada Microprocessor Study Final Technical Report

Appendix I

Frequency of Occurrence for Statements in Compiler Phases

J73/I Front End J73 Front End

Statement Occurrences Z Statement Occurrences Z

Assignment 4,079 44.92 Assignment 5,706 45.93
If 2,196 24.19 If 2,793 22.48
Proc call 1,410 15.53 Proc call 2,219 17.86
Goto 1,004 11.06 Goto 1,078 8.68
Return 160 1.76 Return 251 2.02
For 152 1.67 For 205 1.65
Switch 31 .34 While 70 .56
Hult. Assign. 30 .33 Switch 55 .44
While 18 .20 Mutt. Assign. 47 .38

Optimizer Code Generator

Statement Occurences T Statement Occurences %

Assignment 896 40.88 Proc call 1584 39.48
If 478 21.81 Assigniaent 1299 32.38
Proc call 394 17.97 If 826 20.59
Goto 291 13.28 Goto 141 3.51
For 73 3.33 Return 72 1.79
Return 38 1.73 For 56 1.40
Switch 17 .78 Switch 27 .67
While 3 .14 While 5 .12
Mult. Assign. 2 .11 Mult. Assign. 2 .05

170

JOVIAL/Ada Microprocessor Study Final Technical Report

Editor

Statement Occurences :

Assignment 1,061 40.59
Proc call 764 29.23
If 517 19.78
Goto 122 4.67
For 85 3.20
Return 36 1.38
Switch 24 .92
While 4 .15
Mult. Assign. 1 .04

J73/I TOTALS J73 TOTALS

Statement Occurences % Statement Occurences I

Assignment 7,335 40.98 Assignment 8,962 42.19
Proc call 4,152 23.20 Proc call 4,961 23.35
If 4,017 22.44 If 4,614 21.72
Goto 1,558 8.70 Goto 1,632 7.68
For 366 2.04 For 419 1.97
Return 306 1.71 Return 397 1.87
Switch 99 .55 Switch 123 .58
Mult. Assign. 35 .20 While 82 .39
While 30 .17 Mult. Assign. 52 .24

17,898 21,242

Note: 1. The percentages shown under the heading "J73 TOTALS" were used as a
basis for the mix figures (Chapter 19, Appendices L and M).

171

JOVIAL/Ada Microprocessor Study Final Technical Report

Appendix J

Execution benckzaark results
(Times in Seconds)

Test I C T P A KA KI XL

Ackerman 207.0 75.1 18.7 27. 11.8 3.2
* 199.3 62.7 24.7 10.6 3.0

Sieve 18.4 11.3 4.4 1.4 .47 .16
* 15.9 2.7 .97 .35 .10

Prime 256.3 746.8

172

JOVIAL/Ada Microprocessor Study Final Technical Report

Quicksort
(recursive)
With bounds
checking

Elements I C T P A KA KI KIL

50 .4
100 .9 .4

500 6.5 3.1
1000 14.2 6.6 3.4 1.3 .55 .15

1000+ 1.1 .39 .11

5000 85.8 40.6 17.2 21.7 9.4 3.0 .90
5000+ 6.3 2.3 .79

No bounds

checking

Elements I C T P A KA KI KL

50 .3 .4

100 .6 .3 .9
500 4.8 1.0 6.5

1000 10.9 2.3 14.2 1.2 .40 .13

1000+ .8 .28 .07

5000 63.6 14.4 83.5 3.2 6.7 2.3 .69

5000+ 4.5 1.7 .46

Quicksort

(Iterative)

Elements I C

50 .4

100 .9 .4

500 6.8 3.3
1000 14.6 7.3

5000 87.6 43.2

173

JOVIAL/Ada Microprocessor Study Final Technical Report

Bubblesort
With bounds
checking

Elements I C

50 1.9 .8
100 7.6 3.6
500 186.3 90.3

1000 361.2

Bubblesort
No bounds
checking

Elements I C T

50 1.3 .3 1.8
100 5.8 1.1 7.4
500 145.8 30.8 180.6

1000 122.9

174

JOVIAL/Ada Microprocessor Study Final Technical Report

Key:

I - Interpretive - UCSD Pascal on Northatar Horizon (4 Mhz ZBO)

C - Compiled - Pascal/Z on Horizon

- Threaded - SL5 on Horizon

P - Pascal - Telesoft Pascal on 8Mhz 68000 with Q-bus

A - Ada - Telesoft Ada on 68000

KA - DEC-10 KAIO

KI - DEC-10 KIlO

KL - DEC-10 KL1O

Notes: 1. Rows marked with an asterisk represent speeds with range checking
turned off, except for the sort tests, where checking is indicated
in the heading.

2. For the sort tests rows marked with a plus sign represent times
with the main array allocated statically (i.e., not on the runtime
stack). Other figures are for the array on the stack.

17

175

JOVIAL/Ada Microprocessor Study Final Technical Report

Execution benchmark results
(Normalized speeds)

Test I C T P A KA KI KL

Ackerman .4 1.0 4.0 2.8 6.4 23
* .3 1.0 2.5 5.9 21

Sieve .6 1.0 2.6 8.1 24 71
* .2 1.0 1.9 5.7 27

Prime 3.0 1.0

176

JOVIAL/Ada Microprocessor Study Final Techvical Report

Quicksort
(recursive)

With bounds

checking

Elements I C T P A KA KI KL

50
100 .4 1.0

500 .5 1.0
1000 .5 1.0 1.9 5.1 12 44
+ 6 17 60

5000 .5 1.0 2.4 1.9 4.3 14 45
+ 6.4 18 51

No bounds

checking

Elements I C T P A KA KI KL

50
100 .5 1.0 .3

500 .2 1.0 .2
1000 .2 1.0 .2 1.9 5.8 18
+ 2.9 8.2 33
5000 .2 1.0 .2 4.5 2.1 6.3 21
+ 3.2 8.5 31

Quicksort

(Iterative)

Elements I C

50 .4 1.0

100 .4 1.0
500 .5 1.0

1000 .5 1.0
5000 .5 1.0

177

-S.

JOVIAL/Ada Microprocessor Study Final Technical Report

Bubblesort
With bounds
checking

Elements I C

50 .4 1.0
100 .5 1.0
500 .5 1.0

1000 1.0

Bubblesort
No bounds
checking

Elements I C T

50 .3 1.0 .2
100 .2 1.0 .1
500 .2 1.0 .2

1000 1.0

Key:

I - Interpretive - USCD Pascal on Northstar Horizon (4Mhz Z80)

C - Compiled - Pascal/Z on Horizon

T - Threaded - SL5 on Horizon

P - Pascal - Telesoft Pascal on 8Mhz 68000 with Q-bus

A - Ada - Telesoft Ada on 68000

KA - DEC-10 KAl0

KI - DEC-10 KI10

KL - DEC-10 KL10

178

...........................o,..

JOVIAL/Ada Microprocessor Study Final Technical Report

Appendix K

Compilation Statistics

Symbol Symbol Number
State- Table Table of Bytes/

Lines ments Size (1) Size (2) Entries entry

GPRCS 5797 4824 237,868 90,256 5311 17

REPL 3819 2704 180,732 57,776 3529 16

COMPUT 4095 2784 183,084 59,876 3645 16

EDIT 3555 1931 151,108 49,072 3020 16

Notes: 1. This size is in bytes and includes debugging routines as well as
name and define strings.

2. This size is the number of bytes for symbol table entries other
than names and defines. (The debugging routines included in Size
(1) are excluded here.)

IL bytes/

Names Defines IL size (bytes) statement

GPRCS 2215 294 65,972 14

REPL 2109 295 35,380 13

COMPUT 2161 298 35,736 13

EDIT 1929 172 29,164 15

179

JOVIAL/Ada Microprocessor Study Final Techaical Report

Appendix L

Compiler Gibson Mix - Space

Machine Mix z a c p f g i

P 1 4.4 3.5 3.8 2.0 1.7 3.0 6.7
2 4.4 3.5 3.8 2.0 1.7 3.0 6.7
3 5.7 5.1 5.3 2.0 1.8 3.0 8.1
4 5.7 5.1 5.3 2.0 1.8 3.0 8.1

P*1 5.5 4.3 5.5 2.0 1.9 3.0 8.2
2 5.5 4.3 5.5 2.0 1.9 3.0 8.2
3 6.9 6.0 7.2 2.0 2.0 3.0 9.7
4 6.9 6.0 7.2 2.0 2.0 3.0 9.7

Z80 1 13. 12. 15. 25. 10. 3.0 14.
2 12. 12. 15. 25. 10. 3.0 14.
3 15. 14. 17. 25. 11. 3.0 16.
4 14. 14. 17. 25. 11. 3.0 16.

8086 1 7.4 6.0 9.3 11. 12. 3.0 8.3
2 7.1 6.0 9.3 11. 12. 3.0 8.3
3 8.7 7.5 11. 11. 13. 3.0 9.7
4 8.4 7.5 11. 11. 13. 3.0 9.7

Z8000 1 10. 7.7 13. 25. 12. 4.0 9.5
2 9.4 7.7 13. 25. 12. 4.0 -9.5
3 13. 11. 16. 25. 14. 4.0 12.
4 12. 11. 16. 25. 14. 4.0 12.

MC68000 1 8.2 6.6 11. 11. 12. 2.0 9.4
2 7.9 6.6 11. 11. 12. 2.0 9.4
3 9.7 8.5 13. 11. 13. 2.0 10.
4 9.5 8.5 13. 11. 13. 2.0 10.

180

JOVIAL/Ada Microprocessor Study Final Technical Report

Machine Mix z a c p f g i

DECI0 1 2.6 2.0 2.8 6.0 4.0 1.0 3.1
(vords) 2 2.5 2.0 2.8 6.0 4.0 1.0 3.1

3 3.1 2.6 3.4 6.0 4.4 1.0 3.7
4 3.0 2.6 3.4 6.0 4.4 1.0 3.7

DEC10 1 12. 9.0 13. 27. 18. 4.5 14.
(8-bit 2 11. 9.0 13. 27. 18. 4.5 14.
bytes) 3 14. 12. 15. 27. 20. 4.5 17.

4 14. 12. 15. 27. 20. 4.5 17.

IBM370 1 11. 7.9 13. 35. 20. 4.0 12.
2 10. 7.9 13. 35. 20. 4.0 12.

3 14. 11. 16. 35. 22. 4.0 14.
4 13. 11. 16. 35. 22. 4.0 14.

VAX 1 6.3 4.9 9.3 6.0 8.0 2.0 7.2
2 6.1 4.9 9.3 6.0 8.0 2.0 7.2

3 7.6 6.4 11. 6.0 8.9 2.0 8.6
4 7.4 6.4 11. 6.0 8.9 2.0 8.6

CAPS1O 1 3.9 2.5 4.8 5.0 10. 2.0 5.0
2 3.7 2.5 4.8 5.0 10. 2.0 5.0
3 4.6 3.4 5.7 5.0 11. 2.0 5.9
4 4.5 3.4 5.7 5.0 11. 2.0 5.9

CAPS10* 1 5.2 4.1 6.5 5.0 10. 2.0 6.6
2 5.1 4.1 6.5 5.0 10. 2.0 6.6
3 6.0 5.1 7.4 5.0 11. 2.0 7.4
4 5.9 5.1 7.4 5.0 11. 2.0 7.4

1750A 1 6.7 4.4 9.3 19. 10. 2.0 6.2
2 6.2 4.4 9.3 19. 10. 2.0 6.2
3 7.7 5.7 11. 19. 11. 2.0 7.3
4 7.2 5.7 11. 19. 11. 2.0 7.3

181

JOVIAL/Ada Microprocessor Study Final Technical Report

Machine Mix z a c p f g i

Nebula 1 6.4 4.9 8.5 10. 8.0 2.0 7.2
2 6.1 4.9 8.5 10. 8.0 2.0 7.2
3 6.9 5.5 9.1 10. 8.4 2.0 7.8
4 6.6 5.5 9.1 10. 8.4 2.0 7.8

Data 1 1.4 1.8 1.8 0.0 1.0 0.0 1.5
2 1.4 1.8 1.8 0.0 1.0 0.0 1.5
3 1.7 2.1 2.1 0.0 1.2 0.0 1.8
4 1.7 2.1 2.1 0.0 1.2 0.0 1.8

Statement Type Codes (from [Bloom74])

z All statements
a Assignment statements
c Call statements
p Procedure prologues, epilogues
f For statements
g Goto statements
i If statements

Machine Codes

P UCSD Pascal Pseudo - machine
Z80 Zilog Z80
8086 Intel 8086, APX86
Z8000 Zilog Z8001 (similar to DIS)
MC68000 Motorols MC68000
DEC10 Digital Equipment Corporation PDP-10
IBM370 IBM360, 370, 30XX and lookalikes
VAX Digital Equipment Corpcration VAX-11/780
CAPS7 Collins CAPS-7
CAPSIO Collins CAPS-10
1750A MIL-STD-1750A
Nebula MIL-STD-1862A
Data This is not a machine, but represents the weighted average of the

number of references to local data for the statements in the mix.

182

JOVIAL/Ada Microprocessor Study Final Technical Report

Mix Codes

1. Using statement mix from [Bloom74].
2. Using statement mix from Appendix I.
3. Using statement mix from [Bloom74] with subscripting correction based on

statistics from Appendix F.
4. Using statement mix from Appendix I with subscripting correction based on

statistics from Appendix H.

Notes: 1. All figures represent bytes, except as noted.

2. Two sets of figures are given for the P machine and CAPS. The
first set represent the best-case assumption (i.e., all data may be
referenced with the shortest possible instruction). For these
machines this assumption only holds if there are fewer than 16
local data items. The figures marked with the asterisks represent
a more reasonable assumption, up to 256 data items.

183

52A16 S SOFTWARE ENGSINEERING ASSOCIATES INC TORRANCE CA F/G 9/2
JOVIAL/ADA MICROPROCESSOR STUDY. 1W
APR 82 T E DEVINE, T L DUNBAR, M B LITTLEJOHN F30602-SO-C 0153

, U7NCL-:ASSIFIE:D RADC-TR-82-A1 ML

TI

1.0 :11_

jp .2

1111121
1.JI25 flfl 1.16

MPCO~P RtSOLLTION T[HI ES

JOVIAL/Ada Microprocessor Study Final Technical Report

Appendix N

Compiler Gibson Mix - Time

machine Nix z a c p f S i

P 1 770 390 1800 0 1200 160 570-
2 760 390 1800 0 1200 160 570

3 980 640 200 0 1300 160 780
4 780 390 1770 0 1300 160 570

5 760 390 1770 0 1300 160 570

6 990 640 2010 0 1450 160 780

z80 1 110 70 100 170 30 12 70
2 110 70 100 170 30 12 70

3 130 85 120 170 40 12 85
4 110 70 100 170 34 12 70

5 110 70 100 170 34 12 85

6 130 85 120 170 44 12 85

8086 1 55 30 75 50 15 15 40
2 50 30 75 50 15 15 40
3 60 38 80 50 20 15 45

4 55 30 75 50 25 15 40
5 50 30 75 50 25 15 40
6 60 38 80 50 30 15 45

Z8000 1 45 21 45 80 18 6 25
2 44 21 45 80 18 6 25

3 55 30 55 80 23 6 30
4 45 21 45 80 23 6 25
5 44 21 45 80 23 6 25
6 55 30 55 80 28 6 30

184

JOVIML/Ads Microproce@5st Study Final Technical Report

machine Mix x a c p 8

MC68000 1 43 22 50 55 22 10 30
2 42 22 50 55 22 10 30
3 49 29 55 55 26 10 35
4 43 22 50 55 30 10 30
5 42 22 50 55 30 10 30
6 49 29 55 55 34 10 35

RA10 1 9.9 5.3 8.7 16 7.2 1.8 6.0
2 9.9 5.3 8.7 16 7.2 1.8 6.0
3 11 7.2 11 16 8.2 1.8 7.6

4 9.9 5.3 8.7 16 5.7 1.8 6.0
5 9.6 5.3 8.7 16 5.7 1.8 6.0
6 11 7.2 11 16 8.2 1.8 7.6

KIlo 1 6.1 2.6 5.1 11 5.3 1.4 3.9
2 5.9 2.6 5.1 11 5.3 1.4 3.9
3 6.8 3.4 5.9 11 5.8 1.4 4.6
4 6.1 2.6 5.1 11 5.3 1.4 3.9
5 5.9 2.6 5.1 11 5.3 1.4 3.9
6 6.8 3.4 5.9 11 5.8 1.4 4.6

360/75 1 4.4 2.8 3.0 5.9 2.8 1.0 3.9
2 4.4 2.8 3.0 5.9 2.8 1.0 3.9
3 4.3 2.7 2.9 5.9 2.8 1.0 3.8
4 4.4 2.8 3.0 5.9 1.3 1.0 3.9
5 4.4 2.8 3.0 5.9 1.3 1.0 3.9
6 4.3 2.7 2.9 5.9 1.2 1.0 3.8

Statement Type Codes (from 13loo743)

z All statements
a Assignment statements
c Call statements
p Procedure prologues, epilogues
f For statements
6 Coto statements
i If statements

185

JOVIAL/Ada Microprocessor Study Final Technical Report

Mix Codes

1. Using statement nix from [gloom74], loops executed 0 times.
2. Using statement mix from Appendix I, loops executed 0 times.
3. Using statement mix from Appendix I, loops executed 0 times, subscripts.
4. Using statement mix from [Bloom74]. loops executed 100 times.
5. Using statement mix from Appendix I, loops executed 100 times.
6. Using statement mix from Appendix I, loops executed 100 tims, subscripts.

Additional Machine Codes (others are described in Appendix L)

KAIO DEC-ID XAIO Processor
1110 DEC-10 KIlO Processor
360/75 IBM 360/75

Notes: 1. Times are given in clock cycles, except for the l10, 11lO and
360/75, whose times are given in microseconds.

2. Times are from manufacturers" literature, except for the P machine.
3. P machine values were obtained by timing selected statments,

solving linear equations to .get times for individual operators and
dividing out time per machine cycle, to convert to number of (Zo)
machine cycles. No figure is given for procedure prologues and
epilogues for the P machine. Times for these are included under c
(calls).

186

JOVIAL/Ads Microprocessor Study ital Technical Report

Appendix N'

List of Companies

The following is a list of addresses of companies which are mentioned in this
report. It is not, by any means, a complete list of companies in the
microcomputer or semiconductor industries.

Action Computer Enterprise, Inc.
55 West Del Mar Blvd.
Pasadena, CA 91105
(213) 793-2440

I
Advanced Micro Devices
901 Thompson Place
Sunnyvale, CA 94086
(408) 732-2400

Apollo Computer Inc.
*5 Executive Park Drive

N. Billerica, MA 01862
(617) 667-8800

Apple Computer Inc.
10260 Bandley Dr.
Cupertino, CA 95014
(800) 538-9696
(800) 662-9238 (in CA)

Atari
1340 Bordeaux Ave.
Sunnyvale, CA 94086

Codore Busisess machines, Inc.
300 Valley Forge Square
681 Moore load
ling of Prussia, PA 19406

Computer Automation. Inc.
18651 Vou Karman
Irvine, CA 92713
(714) 833-8830

187

JOVIAL/Ada Microprocessor Study Final Technical Report

Computex
5710 Drexel Ave.
Chicago, IL 60637
(312) 684-3183

Computh ink
3260 Alpine Road
Menlo Park, CA 94025
(415) 854-2577

Digiac Corporation
175 Engineers Road
Smithtovn, NY 11787
(516) 273-8600

Digital Electronic Systems, Inc.
Box 5252
Torrance, CA 90510
(213) 539-6239

Digital Research
P.O. Box 579
Pacific Grove, CA 93950
(408) 649-3896

Fairchild Semiconductor
464 Ellis Street
Mountain View, CA 94040
(415) 962-3278

Reath/Zenith
Reath Co.
Denton larbor, MI 49022

Nevlett-Pacard
Data Systems Division
11000 Wolfe load
Cupertino, CA 95014

Intel Corp.
3065 Bowers Ave.
Santa Clara, CA 95051
(408) 987-8080

188

JOVIAL/Ada Microprocessor Study Final Technical Report

Ithaca Intersystems Inc.
1650 Hanshaw Road
P.O. Box 91
Ithaca, NY 14850
(607) 257-0190

NOS Technology, Inc.
950 Rittenhouse Road
Norristown, PA 19401

Motorola Semiconductor Products Inc.
3501 Ed Bluestein Blvd.
Austin, Texas 78721

National Semiconductor Corp.
2900 Semiconductor Drive
Santa Clara, CA 95051
(408) 737-5000

North Star Computers, Inc.
2547 Ninth Street
Berkeley, CA 94710
(415) 549-0858

Ohio Scientific
1333 South Chillicothe Road
Aurora, O 44202
(216) 831-5600

OSM Computer Corporation
2364 Walsh Avenue
Santa Clara, CA 95051
(408) 496-6910

Radio Shack
1300 One Tandy Center
Fort Worth, TI 76102

ii Software
P.O. Box 1512
Madison, WI 53701
(608) 244-6436

189

JOVIAL/Ada Microprocessor Study Final Technical Report

TeleSoft
10639 Roselle Street
San Diego, CA 92121
(714) 457-2700

TeleVideo Systems Inc.
1170 Morse Ave.
Sunnyvale, CA 94086
(408) 745-7760

Texas Instruments Inc.
Semiconductor Group
P.O. Box 1443
Houston, Texas 77001

Vector Graphic Inc.
31364 Via Colins
Westlake Village, CA 91362
(800) 423-5857
(800) 382-3367 (in CA)

Western Digital Corp.
3128 Redhill Ave.
lox 2180
Newport Beach, CA 92663
(714) 557-3550

Zilog, Inc.
10460 Bubb Road
Cupertino, CA 95014
(408) 446-4666

190

MISSION
Of

Row. Air Development Center
RAVC ptan6 and execu*teA 4teAeatch, devetopmtent, te6.t and
ze.Lected acqu.L6tion ptoq.oma in .6uppo'Lt o6 Command, ContAot
Comn~icationa and InteUigence (C31) activitieA. Techi.Zeo
and engineeAxing 6appoit~t withn atiea o6 techniszat comnpetencze
ia ptovided to ESP Pxog~'ah O66iLe (P0,6) and othteA ESV
etenenUt. The p'~2ncpat techn.Zeat mi4,6ion aLea,6 aMe
comminn.cat>ona, etecttomagnetic. guidance and conftjt, .6ut-
uv..dtance o6 qxowid and aeAoa pace object6, intettience data
c0Utect&ofl and hand-ting, injo'waia~on 6y.6tem technotogy,
iono~apheAltc pt0pagati0n, 6otid atate .6cen'e6, mietount'e

*phya6icA and etectAonZc uttiabitt, mantanabtt and
comnpatibiLUty.

